Thematic Cartography and Geovisualization

Lýsing:
This comprehensive and well-established cartography textbook covers the theory and the practical applications of map design and the appropriate use of map elements. It explains the basic methods for visualizing and analyzing spatial data and introduces the latest cutting-edge data visualization techniques. The fourth edition responds to the extensive developments in cartography and GIS in the last decade, including the continued evolution of the Internet and Web 2.
0; the need to analyze and visualize large data sets (commonly referred to as Big Data); the changes in computer hardware (e. g. , the evolution of hardware for virtual environments and augmented reality); and novel applications of technology. Key Features of the Fourth Edition: Includes more than 400 color illustrations and it is available in both print and eBook formats. A new chapter on Geovisual Analytics and individual chapters have now been dedicated to Map Elements, Typography, Proportional Symbol Mapping, Dot Mapping, Cartograms, and Flow Mapping.
Extensive revisions have been made to the chapters on Principles of Color, Dasymetric Mapping, Visualizing Terrain, Map Animation, Visualizing Uncertainty, and Virtual Environments/Augmented Reality. All chapters include Learning Objectives and Study Questions. Provides more than 250 web links to online content, over 730 references to scholarly materials, and additional 540 references available for Further Reading.
There is ample material for either a one or two-semester course in thematic cartography and geovisualization. This textbook provides undergraduate and graduate students in geoscience, geography, and environmental sciences with the most valuable up-to-date learning resource available in the cartographic field. It is a great resource for professionals and experts using GIS and Cartography and for organizations and policy makers involved in mapping projects.
Annað
- Höfundar: Terry A. Slocum, Robert B McMaster, Fritz C. Kessler, Hugh.H Howard
- Útgáfa:4
- Útgáfudagur: 2022-08-18
- Hægt að prenta út 2 bls.
- Hægt að afrita 2 bls.
- Format:ePub
- ISBN 13: 9781000631074
- Print ISBN: 9781032766676
- ISBN 10: 1000631079
Efnisyfirlit
- Cover Page
- Half-Title Page
- Title Page
- Copyright Page
- Dedication
- Contents
- Preface
- Acknowledgments
- About the Authors
- Chapter 1 Introduction
- 1.1 Overview
- 1.2 Learning Objectives
- 1.3 What Is a Thematic Map?
- 1.4 How Are Thematic Maps Used?
- 1.5 Basic Steps for Communicating Map Information
- 1.6 Technological Change in Cartography and Its Consequences
- 1.7 What Is Geovisualization?
- 1.8 Related GIScience Techniques
- 1.9 Cognitive Issues in Cartography
- 1.10 Social and Ethical Issues in Cartography
- 1.11 Summary
- 1.12 Study Questions
- References
- Part I Principles of Cartography
- Chapter 2 A Historical Perspective on Thematic Cartography
- 2.1 Introduction
- 2.2 Learning Objectives
- 2.3 A Brief History of Cartography
- 2.4 History of Thematic Cartography
- 2.4.1 The Rise of Social Cartography
- 2.5 History of U.S. Academic Cartography
- 2.5.1 Period 1: Early Beginnings
- 2.5.1.1 John Paul Goode
- 2.5.1.2 Erwin Raisz
- 2.5.1.3 Guy-Harold Smith
- 2.5.1.4 Richard Edes Harrison
- 2.5.2 Period 2: The Post-War Era and the Building of Core Academic Programs
- 2.5.2.1 University of Wisconsin
- 2.5.2.2 University of Kansas
- 2.5.2.3 University of Washington
- 2.5.3 Period 3: Growth of Secondary Programs
- 2.5.4 Period 4: Integration with GIScience
- 2.5.1 Period 1: Early Beginnings
- 2.6 European Thematic Cartography
- 2.6.1 The Swiss School
- 2.6.2 The British Experimental Cartographic Unit
- 2.6.3 Bertin and French Thematic Cartography
- 2.7 The Paradigms of American Cartography
- 2.7.1 Analytical Cartography
- 2.7.2 Maps and Society
- 2.7.2.1 Privacy
- 2.7.2.2 Power and Access
- 2.7.2.3 Ethics
- 2.7.2.4 Public Participation GIS/Mapping
- 2.8 Summary
- 2.9 Study Questions
- References
- Chapter 2 A Historical Perspective on Thematic Cartography
- Chapter 3 Statistical and Graphical Foundation
- 3.1 Introduction
- 3.2 Learning Objectives
- 3.3 Population and Sample
- 3.4 Descriptive versus Inferential Statistics
- 3.5 Analyzing the Distribution of Individual Attributes
- 3.5.1 Tables
- 3.5.1.1 Raw Table
- 3.5.1.2 Grouped-Frequency Table
- 3.5.2 Graphs
- 3.5.2.1 Point and Dispersion Graphs
- 3.5.2.2 Histogram
- 3.5.3 Numerical Summaries
- 3.5.3.1 Measures of Central Tendency
- 3.5.3.2 Measures of Dispersion
- 3.5.1 Tables
- 3.6 Analyzing the Relationship between Two or More Attributes
- 3.6.1 Tables
- 3.6.2 Graphs
- 3.6.3 Numerical Summaries
- 3.6.3.1 Bivariate Correlation
- 3.6.3.2 Bivariate Regression
- 3.6.3.3 Reduced Major-Axis Approach
- 3.6.3.4 Multiple Regression and Other Multivariate Techniques
- 3.6.3.5 Considerations in Using Correlation-Regression
- 3.8.1 Geographic Center
- 3.8.2 Spatial Autocorrelation and Measuring Spatial Pattern
- 3.8.3 Measuring Map Complexity
- 4.1 Introduction
- 4.2 Learning Objectives
- 4.3 Nature of Geographic Phenomena
- 4.3.1 Spatial Dimension
- 4.3.2 Models of Geographic Phenomena
- 4.3.3 Phenomena versus Data
- 4.4 Levels of Measurement
- 4.5 Visual Variables
- 4.5.1 Visual Variables for Quantitative Phenomena
- 4.5.1.1 Spacing
- 4.5.1.2 Size
- 4.5.1.3 Perspective Height
- 4.5.1.4 Hue, Lightness, and Saturation
- 4.5.2 Visual Variables for Qualitative Phenomena
- 4.5.2.1 Orientation and Shape
- 4.5.2.2 Arrangement
- 4.5.2.3 Hue
- 4.5.3 Some Considerations in Working with Visual Variables
- 4.5.1 Visual Variables for Quantitative Phenomena
- 4.6 Comparison of Four Common Thematic Mapping Techniques
- 4.6.1 Choropleth Map
- 4.6.2 Proportional Symbol Map
- 4.6.3 Isopleth Map
- 4.6.4 Dot Map
- 4.6.5 Discussion
- 4.7 Selecting Visual Variables for Choropleth Maps
- 4.8 Using Senses Other than Vision to Interpret Spatial Patterns
- 4.8.1 Sound
- 4.8.2 Touch (or Haptics)
- 4.8.3 Smell
- 4.9 Summary
- 4.10 Study Questions
- References
- 5.1 Introduction
- 5.2 Learning Objectives
- 5.3 Data to Be Classified
- 5.4 Equal Intervals Method
- 5.5 Quantiles Method
- 5.6 Mean-Standard Deviation Method
- 5.7 Natural Breaks
- 5.8 Optimal
- 5.8.1 The Jenks–Caspall Algorithm
- 5.8.2 The Fisher–Jenks Algorithm
- 5.8.3 Advantages and Disadvantages of Optimal Classification
- 5.9 Head/Tail Breaks: A Novel Classification Method
- 5.10 Criteria for Selecting a Classification Method
- 5.11 Considering the Spatial Distribution of the Data
- 5.12 Summary
- 5.13 Study Questions
- References
- 6.1 Introduction
- 6.2 Learning Objectives
- 6.3 Geographic and Cartographic Scale
- 6.3.1 Multiple-Scale Databases
- 6.4 Definitions of Generalization
- 6.4.1 Definitions of Generalization in the Manual Domain
- 6.4.2 Definitions of Generalization in the Digital Domain
- 6.5 Models of Generalization
- 6.5.1 Robinson et al.’s Model
- 6.5.2 McMaster and Shea’s Model
- 6.5.2.1 Why Generalization Is Needed: The Conceptual Objectives of Generalization
- 6.5.2.2 When Generalization Is Required
- 6.6 The Fundamental Operations of Generalization
- 6.6.1 A Framework for the Fundamental Operations
- 6.6.2 Vector-Based Operations
- 6.6.2.1 Simplification
- 6.6.2.2 Smoothing
- 6.6.2.3 Aggregation
- 6.6.2.4 Amalgamation
- 6.6.2.5 Collapse
- 6.6.2.6 Merging
- 6.6.2.7 Refinement
- 6.6.2.8 Exaggeration
- 6.6.2.9 Enhancement
- 6.6.2.10 Displacement
- 6.6.3 The Simplification Process
- 6.7 An Example of Generalization
- 6.8 New Developments in Cartographic Generalization
- 6.8.1 Measurement of Scale Change
- 6.8.2 Fully Automated Generalization
- 6.8.3 Data Models for Generalization
- 6.8.4 New Forms of Cartographic Data
- 7.1 Introduction
- 7.2 Learning Objectives
- 7.3 Basic Characteristics of Earth’s Graticule
- 7.3.1 Latitude
- 7.3.2 Longitude
- 7.3.3 Distance and Directions on Earth’s Spherical Surface
- 7.4 Determining Earth’s Size and Shape
- 7.4.1 Earth’s Size
- 7.4.2 Earth’s Shape
- 7.4.2.1 The Prolate versus Oblate Spheroid Controversy
- 7.4.2.2 Reference Ellipsoid and the Graticule
- 7.4.2.3 The Geoid
- 7.4.2.4 Geodetic Datum
- 7.4.2.5 Geodetic Datums and Thematic Cartography
- 8.1 Introduction
- 8.2 Learning Objectives
- 8.3 The Map Projection Concept
- 8.4 The Reference Globe and Developable Surfaces
- 8.5 The Mathematics of Map Projections
- 8.6 Map Projection Characteristics
- 8.6.1 Class
- 8.6.2 Case
- 8.6.3 Aspect
- 8.7 Distortion on Map Projections
- 8.7.1 A Visual Look at Distortion
- 8.7.2 Scale Factor
- 8.7.3 Tissot’s Indicatrix
- 8.7.4 Distortion Patterns
- 8.7.5 Using Geocart to Visualize Distortion Patterns
- 8.8 Projection Properties
- 8.8.1 Preserving Areas
- 8.8.2 Preserving Angles
- 8.8.3 Preserving Distances
- 8.8.4 Preserving Directions
- 8.8.5 Compromise Projections
- 8.9 Summary
- 8.10 Study Questions
- References
- 9.1 Introduction
- 9.2 Learning Objectives
- 9.3 Potential Selection Guidelines
- 9.3.1 Snyder’s Hierarchical Selection Guideline
- 9.3.1.1 World Map Projections
- 9.3.1.2 Map Projections for a Hemisphere
- 9.3.1.3 Map Projections for a Continent, Ocean, or Smaller Region
- 9.3.1.4 Map Projections for Special Properties
- 9.3.1 Snyder’s Hierarchical Selection Guideline
- 9.4.1 Mapping World Literacy Rates
- 9.4.2 Mapping Russian Population Distribution
- 9.4.3 Mapping Migration to the United States
- 9.4.4 Mapping Tornado Paths across Kansas
- 9.4.5 Mapping a Flight Path from Fairbanks, AK to Seoul, South Korea
- 9.4.5.1 Mapping the Flight Path from Space
- 9.4.5.2 Mapping the Flight Path’s Direction
- 9.4.5.3 Mapping the Flight Path Distance
- 9.4.5.4 Mapping the Great Circle Flight Path
- 9.4.5.5 Mapping the Rhumb Line
- 9.4.5.6 Mapping the Flight Path Using Google Maps
- 9.4.6 Discussion
- 10.1 Introduction
- 10.2 Learning Objectives
- 10.3 How Color Is Processed by the Human Visual System
- 10.3.1 Visible Light and the Electromagnetic Spectrum
- 10.3.2 Structure of the Eye
- 10.3.3 Theories of Color Perception
- 10.3.4 Simultaneous Contrast
- 10.3.5 Color Vision Impairment
- 10.3.6 Beyond the Eye
- 10.4 Models for Specifying Color
- 10.4.1 The RGB Model
- 10.4.2 The CMYK Model
- 10.4.3 The HSV Model
- 10.4.4 The Munsell Model
- 10.4.5 The CIE Model
- 10.4.6 Discussion
- 10.5 Terminology and Principles in the Practical Use of Color
- 10.5.1 Color Wheels
- 10.5.2 Tints, Shades, and Tones
- 10.5.3 Qualitative Color Conventions
- 10.5.4 Quantitative Color Conventions
- 10.5.5 Theme-Oriented Color Schemes
- 10.6 Summary
- 10.7 Study Questions
- References
- 11.1 Introduction
- 11.2 Learning Objectives
- 11.3 Alignment and Centering
- 11.4 Common Map Elements
- 11.4.1 Frame Line and Neat Line
- 11.4.2 Mapped Area
- 11.4.3 Inset
- 11.4.4 Title and Subtitle
- 11.4.5 Legend
- 11.4.6 Data Source
- 11.4.7 Scale
- 11.4.8 Orientation
- 11.4.9 Relative Type Sizes for Certain Map Elements
- 11.5 Summary
- 11.6 Study Questions
- References
- 12.1 Introduction
- 12.2 Learning Objectives
- 12.3 What Is Typography?
- 12.3.1 Characteristics of Type
- 12.4 General Typographic Guidelines
- 12.5 Specific Typographic Guidelines
- 12.5.1 All Features (Point, Linear, and Areal)
- 12.5.2 Point Features
- 12.5.3 Linear Features
- 12.5.4 Areal Features
- 12.6 Automated Type Placement
- 12.7 Summary
- 12.8 Study Questions
- References
- 13.1 Introduction
- 13.2 Learning Objectives
- 13.3 Elements of Cartographic Design
- 13.3.1 The Design Process
- 13.3.2 Visual Hierarchy
- 13.3.3 Contrast
- 13.3.4 Figure-Ground
- 13.3.5 Balance
- 13.4 Case Study: Real Estate Site Suitability Map
- 13.4.1 Steps 1–3 of the Map Communication Model
- 13.4.2 Step 4 of the Map Communication Model: Design and Construct the Map
- 13.4.3 Return to Procedure 4: Implementation of Map Elements and Typography
- 13.4.3.1 Frame Line and Neat Line
- 13.4.3.2 Mapped Area
- 13.4.3.3 Inset
- 13.4.3.4 Title and Subtitle
- 13.4.3.5 Legend
- 13.4.3.6 Data Source
- 13.4.3.7 Scale
- 13.4.3.8 Orientation
- 13.4.4 Final Procedures
- 13.5 Summary
- 13.6 Study Questions
- References
- 14.1 Introduction
- 14.2 Learning Objectives
- 14.3 Planning Ahead
- 14.4 Map Editing
- 14.5 Raster Image Processing for Print Reproduction
- 14.5.1 Printing the Digital Map
- 14.6 Screening for Print Reproduction
- 14.6.1 Halftone and Stochastic Screening
- 14.6.2 Halftone Screening Parameters
- 14.6.3 Stochastic Screening Parameters
- 14.7 Aspects of Color Printing
- 14.7.1 Process Colors
- 14.7.2 Spot Colors
- 14.7.3 High-Fidelity Process Colors
- 14.7.4 Color Management Systems
- 14.8 High-Volume Print Reproduction
- 14.8.1 The Prepress Phase
- 14.8.2 File Formats for Prepress
- 14.8.3 Proofing Methods
- 14.8.4 Offset Lithographic Printing
- 14.9 Summary
- 14.10 Study Questions
- References
- Chapter 15 Choropleth Mapping
- 15.1 Introduction
- 15.2 Learning Objectives
- 15.3 Selecting Appropriate Data
- 15.4 Factors for Selecting a Color Scheme
- 15.4.1 Kind of Data
- 15.4.2 Color Naming
- 15.4.3 Color Vision Impairment
- 15.4.4 Simultaneous Contrast
- 15.4.5 Map Use Tasks
- 15.4.6 Color Associations
- 15.4.7 Aesthetics
- 15.4.8 Age of the Intended Audience
- 15.4.9 Presentation vs. Data Exploration
- 15.4.10 Economic Limitations and Client Requirements
- 15.5 Systems for Specifying Color Schemes
- 15.5.1 Approaches for Classed Maps
- 15.5.1.1 Color Ramping and HSV Systems
- 15.5.1.2 The Munsell Curve
- 15.5.1.3 ColorBrewer
- 15.5.2 Approaches for Unclassed Maps
- 15.5.2.1 Applying the Munsell Curve
- 15.5.2.2 Kovesi’s Approach
- 15.5.1 Approaches for Classed Maps
- 15.6 Classed vs. Unclassed Mapping
- 15.6.1 Maintaining Numerical Data Relations
- 15.6.2 Presentation vs. Data Exploration
- 15.6.3 Summarizing the Results of Experimental Studies
- 15.6.3.1 Specific Information
- 15.6.3.2 General Information
- 15.6.3.3 Discussion
- 16.1 Introduction
- 16.2 Learning Objectives
- 16.3 Selecting Appropriate Data and Ancillary Information
- 16.4 Some Basic Approaches for Dasymetric Mapping
- 16.5 Eicher and Brewer’s Study
- 16.6 Mennis and Hultgren’s Intelligent Dasymetric Mapping (IDM)
- 16.7 Two Approaches for Producing Dasymetric Maps of Population Density
- 16.7.1 Approach One: Using Land Cover and Limiting Ancillary Data Sets
- 16.7.2 Approach Two: Use Zoning Polygons and Limiting Ancillary Data Sets
- 16.7.3 Discussion
- 16.8 Socscape: A Web App for Visualizing Racial Diversity
- 16.9 Mapping the Global Population Distribution
- 16.9.1 Gridded Population of the World
- 16.9.2 LandScan
- 16.9.3 Global Human Settlement Layer
- 16.10 Summary
- 16.11 Study Questions
- References
- 17.1 Introduction
- 17.2 Learning Objectives
- 17.3 Selecting Appropriate Data
- 17.4 Manual Interpolation
- 17.5 Automated Interpolation for True Point Data
- 17.5.1 Triangulation
- 17.5.2 Inverse-Distance Weighting
- 17.5.3 Ordinary Kriging
- 17.5.3.1 Semivariance and the Semivariogram
- 17.5.3.2 Kriging Computations
- 17.5.4 Thin-Plate Splines
- 17.5.5 Choosing among the Interpolation Methods
- 17.6 Tobler’s Pycnophylactic Interpolation
- 17.7 Symbolization
- 17.7.1 Some Basic Symbolization Approaches
- 17.7.2 Color Stereoscopic Effect
- 17.8 Summary
- 17.9 Study Questions
- References
- 18.1 Introduction
- 18.2 Learning Objectives
- 18.3 Selecting Appropriate Data
- 18.4 Kinds of Proportional Symbols
- 18.5 Scaling Proportional Symbols
- 18.5.1 Mathematical Scaling
- 18.5.2 Perceptual Scaling
- 18.5.2.1 Formulas for Perceptual Scaling
- 18.5.2.2 Problems in Applying the Formulas
- 18.5.3 Range-Graded Scaling
- 18.6 Legend Design
- 18.6.1 Arranging Symbols
- 18.6.2 Which Symbols to Include
- 18.7 Handling Overlap of Symbols
- 18.7.1 How Much Overlap?
- 18.7.2 Symbolizing Overlap
- 18.8 Necklace Maps
- 18.9 Summary
- 18.10 Study Questions
- References
- 19.1 Introduction
- 19.2 Learning Objectives
- 19.3 Key Issues Involved in Dot Mapping
- 19.3.1 Determining Regions within Which Dots Should Be Placed
- 19.3.2 Selecting Dot Size and Unit Value
- 19.3.3 Placing Dots within Regions
- 19.3.3.1 Placing Dots Manually
- 19.3.3.2 Placing Dots Digitally
- 19.3.4 Designing a Legend
- 19.4 Graduated Dot Mapping
- 19.5 Interactive Dot Mapping on the Web
- 19.6 Summary
- 19.7 Study Questions
- References
- 20.1 Introduction
- 20.2 Learning Objectives
- 20.3 Methods that Attempt to Preserve the Shape of Enumeration Units
- 20.3.1 Noncontiguous Cartograms
- 20.3.2 Contiguous Cartograms
- 20.3.2.1 Gridded Cartograms
- 20.3.3 Mosaic Cartograms
- 20.4 Methods that Do Not Preserve the Shape of Enumeration Units
- 20.4.1 Rectangular Cartograms
- 20.4.1.1 Rectilinear Cartograms
- 20.4.2 Dorling Cartograms
- 20.4.3 Demers Cartograms
- 20.4.1 Rectangular Cartograms
- 20.5 Contrasting Various Cartogram Methods
- 20.5.1 Contrasting Cartogram Methods in Terms of Aspects of Accuracy
- 20.5.2 A User Study of Major Cartogram Methods
- 20.6 Alternatives to Conventional Cartograms
- 20.6.1 Combined Choropleth/Proportional Symbol Maps
- 20.6.2 Value-by-Alpha Maps
- 20.6.3 Balanced Cartograms
- 20.7 Summary
- 20.8 Study Questions
- References
- 21.1 Introduction
- 21.2 Learning Objectives
- 21.3 Basic Types of Flow Maps and Associated Data for Flow Mapping
- 21.4 Issues in Designing Flow Maps
- 21.5 Flow Mapping Prior to Automation
- 21.6 Early Digital Flow Mapping Efforts by Waldo Tobler
- 21.7 Examples of Recent Digital Flow Mapping
- 21.7.1 Stephen and Jenny’s Interactive Web-Based Origin-Destination Flow Map
- 21.7.2 Koylu et al.’s Web-Based Software for Designing Origin-Destination Flow Maps
- 21.7.2.1 Koylu and Guo’s User Study
- 21.7.2.2 Koylu et al.’s FlowMapper Software
- 21.7.3 Flow Mapping in Virtual Environments
- 21.8 Geovisual Analytics and Flow Mapping
- 21.9 Summary
- 21.10 Study Questions
- References
- 22.1 Introduction
- 22.2 Learning Objectives
- 22.3 Bivariate Mapping
- 22.3.1 Comparing Maps
- 22.3.1.1 Comparing Choropleth Maps
- 22.3.1.2 Comparing Miscellaneous Thematic Maps
- 22.3.1.3 Comparing Maps for Two Points in Time
- 22.3.2 Combining Two Attributes on the Same Map
- 22.3.2.1 Bivariate Choropleth Maps
- 22.3.2.2 Additional Bivariate Mapping Techniques
- 22.3.1 Comparing Maps
- 22.4.1 Comparing Maps
- 22.4.2 Combining Attributes on the Same Map
- 22.4.2.1 Trivariate Choropleth Maps
- 22.4.2.2 Multivariate Dot Maps
- 22.4.2.3 Multivariate Point Symbol Maps
- 22.4.2.4 Acquiring Specific and General Information from Multivariate Maps
- 22.4.2.5 Ring Maps: An Alternative to Conventional Symbolization Approaches
- 22.5.1 Basic Steps in Hierarchical Cluster Analysis
- 22.5.2 Adding a Contiguity Constraint to a Hierarchical Cluster Analysis
- Chapter 23 Visualizing Terrain
- 23.1 Introduction
- 23.2 Learning Objectives
- 23.3 Nature of the Data
- 23.4 Vertical Views
- 23.4.1 Hachures
- 23.4.2 Contour-Based Methods
- 23.4.2.1 Eynard and Jenny’s Work
- 23.4.3 Raisz’s Physiographic Method
- 23.4.4 Shaded Relief
- 23.4.5 Morphometric Techniques
- 23.4.5.1 Symbolizing Aspect and Slope: Brewer and Marlow’s Approach
- 23.4.5.2 Symbolizing Other Morphometric Parameters
- 23.5 Oblique Views
- 23.5.1 Block Diagrams
- 23.5.2 Panoramas and Related Oblique Views
- 23.5.3 Plan Oblique Relief
- 23.6 Physical Models
- 23.7 Issues in Creating Shaded Relief
- 23.7.1 Generalizing the Terrain
- 23.7.2 Selecting an Azimuth and Sun Elevation for Illumination
- 23.7.3 Other Lighting Model Issues
- 23.7.4 Representation of Swiss-Style Rock Drawing
- 23.7.5 Color Considerations
- 23.8 Summary
- 23.9 Study Questions
- References
- 24.1 Introduction
- 24.2 Learning Objectives
- 24.3 Early Developments
- 24.4 Visual Variables for Animation
- 24.5 Examples of Temporal Animations
- 24.5.1 Animating Movement and Flows
- 24.5.2 Animating Choropleth Maps
- 24.5.2.1 Some Basic Examples of Choropleth Animation
- 24.5.2.2 Should We Generalize Choropleth Animations?
- 24.5.2.3 Should We Utilize Classed or Unclassed Maps?
- 24.5.3 Animating Proportional Symbol Maps
- 24.5.4 Animating Isarithmic Maps
- 24.5.5 Other Temporal Animations
- 24.6 Examples of Nontemporal Animations
- 24.6.1 Peterson’s Early Work
- 24.6.2 Gershon’s Early Work
- 24.6.3 Fly-Overs
- 24.6.4 Viégas and Wattenberg’s Wind Map
- 24.7 Enhancing the Interactivity in Animations
- 24.7.1 Harrower’s Work
- 24.7.2 CoronaViz
- 24.8 Does Animation Work?
- 24.9 Guidelines for Designing Your Own Animations
- 24.10 Using 3-D Space to Display Temporal Data
- 24.11 Summary
- 24.12 Study Questions
- References
- 25.1 Introduction
- 25.2 Learning Objectives
- 25.3 Goals of Data Exploration
- 25.4 Methods of Data Exploration
- 25.4.1 Manipulating Data
- 25.4.2 Varying the Symbolization
- 25.4.3 Manipulating the User’s Viewpoint
- 25.4.4 Multiple Map Views
- 25.4.5 Linking Maps with Other Forms of Display
- 25.4.6 Highlighting Portions of a Data Set
- 25.4.7 Probing the Display
- 25.4.8 Toggling Individual Themes On and Off
- 25.4.9 Animation
- 25.4.10 Access to Miscellaneous Resources
- 25.4.11 How Symbols Are Assigned to Attributes
- 25.4.12 Automatic Map Interpretation
- 25.5 Examples of Data Exploration
- 25.5.1 Moellering’s 3-D Mapping Software
- 25.5.2 ExploreMap and Map Sequencing
- 25.5.3 Project Argus
- 25.5.4 MapTime
- 25.5.5 CommonGIS
- 25.5.6 GeoDa
- 25.5.7 Micromaps
- 25.5.7.1 Linked Micromaps Plot
- 25.5.7.2 Conditioned Micromaps
- 25.5.8 ViewExposed
- 25.5.9 Using Tableau to Create Interactive Data Visualizations
- 25.6 Summary
- 25.7 Study Questions
- References
- 26.1 Introduction
- 26.2 Learning Objectives
- 26.3 Characteristics and Limitations of Big Data
- 26.4 What Is Geovisual Analytics?
- 26.5 The Self-Organizing Map (SOM)
- 26.6 Examples of Geovisual Analytics
- 26.6.1 TaxiVis: A System for Visualizing Taxi Trips in NYC
- 26.6.2 Mosaic Diagrams: A Technique for Visualizing Spatiotemporal Data
- 26.6.3 CarSenToGram: An Approach for Visualizing Twitter Data
- 26.6.4 Crowd Lens: A Tool for Visualizing OpenStreetMap Contributions
- 26.6.5 Use of a SOM for Sense-of-Place Analysis
- 26.7 Summary
- 26.8 Study Questions
- References
- 27.1 Introduction
- 27.2 Learning Objectives
- 27.3 Basic Elements of Uncertainty
- 27.4 General Methods for Depicting Uncertainty
- 27.5 Visual Variables for Depicting Uncertainty
- 27.5.1 Some Examples of Intrinsic Visual Variables
- 27.5.2 Some Examples of Extrinsic Visual Variables
- 27.6 Applications of Visualizing Uncertainty
- 27.6.1 Handling the Uncertainty in Choropleth Maps
- 27.6.1.1 Using Confidence Levels (CLs) to Create Class Breaks
- 27.6.1.2 Using Maximum Likelihood Estimation to Create Class Breaks
- 27.6.1.3 Using the SAAR Software to Visualize Uncertainty
- 27.6.2 Visualizing Climate Change Uncertainty
- 27.6.3 Visualizing Uncertainty in Decision-Making
- 27.6.3.1 Visualizing the Uncertainty of Water Balance Models
- 27.6.3.2 Visualizing the Uncertainty of Forecasted Hurricane Paths
- 27.6.4 Examples of Interactivity and Animation
- 27.6.1 Handling the Uncertainty in Choropleth Maps
- 27.7 Using Sound to Represent Data Uncertainty
- 27.8 Summary
- 27.9 Study Questions
- References
- 28.1 Introduction
- 28.2 Learning Objectives
- 28.3 Defining VEs and AR
- 28.4 Technologies for Creating VEs
- 28.4.1 Personalized Displays
- 28.4.2 Wall-Size Displays
- 28.4.3 Head-Mounted Displays
- 28.4.4 Room-Format and Drafting-Table Format Displays
- 28.5 The Four “I” Factors of VEs
- 28.5.1 Immersion
- 28.5.2 Interactivity
- 28.5.3 Information Intensity
- 28.5.4 Intelligence of Objects
- 28.6 Some Key Questions Regarding VEs
- 28.6.1 Are Specialized Symbols Necessary for Thematic Maps Created in VEs?
- 28.6.2 Are Stereoscopic Maps More Effective than Non-Stereoscopic Maps?
- 28.6.3 What Are Some Examples of VEs That Make Use of Caves and Wall-Size Displays?
- 28.6.3.1 Using a CAVE to Create Soils Maps
- 28.6.3.2 Using a Wall-Size Display to Obtain Public Input on Climate Change Scenarios
- 28.6.3.3 HMDs as a Potential Cost-Effective Solution for Collaborative Efforts
- 28.6.4 What Progress Has Been Made Toward Developing a Digital Earth?
- 28.7 Some Recent Examples of the Utilization of AR
- 28.7.1 The Augmented Reality Sandbox
- 28.7.2 Using AR to Enhance an Understanding of Topographic Maps
- 28.7.3 Developing Novel Methods for Interacting with AR Environments
- 28.7.4 Holograms
- 28.8 Health, Safety, and Social Issues
- 28.9 Summary
- 28.10 Study Questions
- References
UM RAFBÆKUR Á HEIMKAUP.IS
Bókahillan þín er þitt svæði og þar eru bækurnar þínar geymdar. Þú kemst í bókahilluna þína hvar og hvenær sem er í tölvu eða snjalltæki. Einfalt og þægilegt!Rafbók til eignar
Rafbók til eignar þarf að hlaða niður á þau tæki sem þú vilt nota innan eins árs frá því bókin er keypt.
Þú kemst í bækurnar hvar sem er
Þú getur nálgast allar raf(skóla)bækurnar þínar á einu augabragði, hvar og hvenær sem er í bókahillunni þinni. Engin taska, enginn kyndill og ekkert vesen (hvað þá yfirvigt).
Auðvelt að fletta og leita
Þú getur flakkað milli síðna og kafla eins og þér hentar best og farið beint í ákveðna kafla úr efnisyfirlitinu. Í leitinni finnur þú orð, kafla eða síður í einum smelli.
Glósur og yfirstrikanir
Þú getur auðkennt textabrot með mismunandi litum og skrifað glósur að vild í rafbókina. Þú getur jafnvel séð glósur og yfirstrikanir hjá bekkjarsystkinum og kennara ef þeir leyfa það. Allt á einum stað.
Hvað viltu sjá? / Þú ræður hvernig síðan lítur út
Þú lagar síðuna að þínum þörfum. Stækkaðu eða minnkaðu myndir og texta með multi-level zoom til að sjá síðuna eins og þér hentar best í þínu námi.
Fleiri góðir kostir
- Þú getur prentað síður úr bókinni (innan þeirra marka sem útgefandinn setur)
- Möguleiki á tengingu við annað stafrænt og gagnvirkt efni, svo sem myndbönd eða spurningar úr efninu
- Auðvelt að afrita og líma efni/texta fyrir t.d. heimaverkefni eða ritgerðir
- Styður tækni sem hjálpar nemendum með sjón- eða heyrnarskerðingu
- Gerð : 208
- Höfundur : 19060
- Útgáfuár : 2022
- Leyfi : 380