Lýsing:
Scientific Python is a significant public domain alternative to expensive proprietary software packages. This book teaches from scratch everything the working scientist needs to know using copious, downloadable, useful and adaptable code snippets. Readers will discover how easy it is to implement and test non-trivial mathematical algorithms and will be guided through the many freely available add-on modules.
A range of examples, relevant to many different fields, illustrate the language's capabilities. The author also shows how to use pre-existing legacy code (usually in Fortran77) within the Python environment, thus avoiding the need to master the original code. In this new edition, several chapters have been re-written to reflect the IPython notebook style. With an extended index, an entirely new chapter discussing SymPy and a substantial increase in the number of code snippets, researchers and research students will be able to quickly acquire all the skills needed for using Python effectively.
Annað
- Höfundur: John M. Stewart
- Útgáfa:2
- Útgáfudagur: 20-07-2017
- Engar takmarkanir á útprentun
- Engar takmarkanir afritun
- Format:Page Fidelity
- ISBN 13: 9781108184687
- Print ISBN: 9781316641231
- ISBN 10: 1108184685
Efnisyfirlit
- Half-title page
- Title page
- Copyright page
- Contents
- Preface to the Second Edition
- Preface to the First Edition
- 1 Introduction
- 1.1 Scientific Software
- 1.2 The Plan of This Book
- 1.3 Can Python Compete with Compiled Languages?
- 1.4 Limitations of This Book
- 1.5 Installing Python and Add-ons
- 2 Getting Started with IPython
- 2.1 Tab Completion
- 2.2 Introspection
- 2.3 History
- 2.4 Magic Commands
- 2.5 IPython in Action: An Extended Example
- 2.5.1 An IPython terminal workflow
- 2.5.2 An IPython notebook workflow
- 3.1 Typing Python
- 3.2 Objects and Identifiers
- 3.3 Numbers
- 3.3.1 Integers
- 3.3.2 Real numbers
- 3.3.3 Boolean numbers
- 3.3.4 Complex numbers
- 3.4 Namespaces and Modules
- 3.5 Container Objects
- 3.5.1 Lists
- 3.5.2 List indexing
- 3.5.3 List slicing
- 3.5.4 List mutability
- 3.5.5 Tuples
- 3.5.6 Strings
- 3.5.7 Dictionaries
- 3.6 Python if Statements
- 3.7 Loop Constructs
- 3.7.1 The Python for loop
- 3.7.2 The Python continue statement
- 3.7.3 The Python break statement
- 3.7.4 List comprehensions
- 3.7.5 Python while loop
- 3.8 Functions
- 3.8.1 Syntax and scope
- 3.8.2 Positional arguments
- 3.8.3 Keyword arguments
- 3.8.4 Variable number of positional arguments
- 3.8.5 Variable number of keyword arguments
- 3.8.6 Python input/output functions
- 3.8.7 The Python print function
- 3.8.8 Anonymous functions
- 3.9 Introduction to Python Classes
- 3.10 The Structure of Python
- 3.11 Prime Numbers: A Worked Example
- 4.1 One-Dimensional Arrays
- 4.1.1 Ab initio constructors
- 4.1.2 Look-alike constructors
- 4.1.3 Arithmetical operations on vectors
- 4.1.4 Ufuncs
- 4.1.5 Logical operations on vectors
- 4.2 Two-Dimensional Arrays
- 4.2.1 Broadcasting
- 4.2.2 Ab initio constructors
- 4.2.3 Look-alike constructors
- 4.2.4 Operations on arrays and ufuncs
- 4.3 Higher-Dimensional Arrays
- 4.4 Domestic Input and Output
- 4.4.1 Discursive output and input
- 4.4.2 NumPy text output and input
- 4.4.3 NumPy binary output and input
- 4.5 Foreign Input and Output
- 4.5.1 Small amounts of data
- 4.5.2 Large amounts of data
- 4.6 Miscellaneous Ufuncs
- 4.6.1 Maxima and minima
- 4.6.2 Sums and products
- 4.6.3 Simple statistics
- 4.7 Polynomials
- 4.7.1 Converting data to coefficients
- 4.7.2 Converting coefficients to data
- 4.7.3 Manipulating polynomials in coefficient form
- 4.8 Linear Algebra
- 4.8.1 Basic operations on matrices
- 4.8.2 More specialized operations on matrices
- 4.8.3 Solving linear systems of equations
- 4.9 More NumPy and Beyond
- 4.9.1 SciPy
- 4.9.2 SciKits
- 5.1 Introduction
- 5.2 Getting Started: Simple Figures
- 5.2.1 Front-ends
- 5.2.2 Back-ends
- 5.2.3 A simple figure
- 5.2.4 Interactive controls
- 5.3 Object-Oriented Matplotlib
- 5.4 Cartesian Plots
- 5.4.1 The Matplotlib plot function
- 5.4.2 Curve styles
- 5.4.3 Marker styles
- 5.4.4 Axes, grid, labels and title
- 5.4.5 A not-so-simple example: partial sums of Fourier series
- 5.5 Polar Plots
- 5.6 Error Bars
- 5.7 Text and Annotations
- 5.8 Displaying Mathematical Formulae
- 5.8.1 Non-LATEX users
- 5.8.2 LATEX users
- 5.8.3 Alternatives for LATEX users
- 5.9 Contour Plots
- 5.10 Compound Figures
- 5.10.1 Multiple figures
- 5.10.2 Multiple plots
- 5.11 Mandelbrot Sets: A Worked Example
- 6.1 Introduction
- 6.1.1 Multi-dimensional data sets
- 6.2 The Reduction to Two Dimensions
- 6.3 Visualization Software
- 6.4 Example Visualization Tasks
- 6.5 Visualization of Solitary Waves
- 6.5.1 The interactivity task
- 6.5.2 The animation task
- 6.5.3 The movie task
- 6.6 Visualization of Three-Dimensional Objects
- 6.7 A Three-Dimensional Curve
- 6.7.1 Visualizing the curve with mplot3d
- 6.7.2 Visualizing the curve with mlab
- 6.8 A Simple Surface
- 6.8.1 Visualizing the simple surface with mplot3d
- 6.8.2 Visualizing the simple surface with mlab
- 6.9 A Parametrically Defined Surface
- 6.9.1 Visualizing Enneper’s surface using mplot3d
- 6.9.2 Visualizing Enneper’s surface using mlab
- 6.10 Three-Dimensional Visualization of a Julia Set
- 7.1 Computer Algebra Systems
- 7.2 Symbols and Functions
- 7.3 Conversions from Python to SymPy and Vice Versa
- 7.4 Matrices and Vectors
- 7.5 Some Elementary Calculus
- 7.5.1 Differentiation
- 7.5.2 Integration
- 7.5.3 Series and limits
- 7.6 Equality, Symbolic Equality and Simplification
- 7.7 Solving Equations
- 7.7.1 Equations with one independent variable
- 7.7.2 Linear equations with more than one independent variable
- 7.7.3 More general equations
- 7.8 Solving Ordinary Differential Equations
- 7.9 Plotting from within SymPy
- 8.1 Initial Value Problems
- 8.2 Basic Concepts
- 8.3 The odeint Function
- 8.3.1 Theoretical background
- 8.3.2 The harmonic oscillator
- 8.3.3 The van der Pol oscillator
- 8.3.4 The Lorenz equations
- 8.4 Two-Point Boundary Value Problems
- 8.4.1 Introduction
- 8.4.2 Formulation of the boundary value problem
- 8.4.3 A simple example
- 8.4.4 A linear eigenvalue problem
- 8.4.5 A non-linear boundary value problem
- 8.5 Delay Differential Equations
- 8.5.1 A model equation
- 8.5.2 More general equations and their numerical solution
- 8.5.3 The logistic equation
- 8.5.4 The Mackey–Glass equation
- 8.6 Stochastic Differential Equations
- 8.6.1 The Wiener process
- 8.6.2 The Itô calculus
- 8.6.3 Itô and Stratonovich stochastic integrals
- 8.6.4 Numerical solution of stochastic differential equations
- 9.1 Initial Boundary Value Problems
- 9.2 Method of Lines
- 9.3 Spatial Derivatives via Finite Differencing
- 9.4 Spatial Derivatives by Spectral Techniques for Periodic Problems
- 9.5 The IVP for Spatially Periodic Problems
- 9.6 Spectral Techniques for Non-Periodic Problems
- 9.7 An Introduction to f2py
- 9.7.1 Simple examples with scalar arguments
- 9.7.2 Vector arguments
- 9.7.3 A simple example with multi-dimensional arguments
- 9.7.4 Undiscussed features of f2py
- 9.8 A Real-Life f2py Example
- 9.9 Worked Example: Burgers’ Equation
- 9.9.1 Boundary conditions: the traditional approach
- 9.9.2 Boundary conditions: the penalty approach
- 10.1 The One-Dimensional Case
- 10.1.1 Linear elliptic equations
- 10.1.2 Smooth and rough modes
- 10.2 The Tools of Multigrid
- 10.2.1 Relaxation methods
- 10.2.2 Residual and error
- 10.2.3 Prolongation and restriction
- 10.3 Multigrid Schemes
- 10.3.1 The two-grid algorithm
- 10.3.2 The V-cycle scheme
- 10.3.3 The full multigrid (FMG) scheme
- 10.4 A Simple Python Multigrid Implementation
- 10.4.1 Utility functions
- 10.4.2 Smoothing functions
- 10.4.3 Multigrid functions
- A.1 Installing Python Packages
- A.2 Communication with IPython Using the Jupyter Notebook
- A.2.1 Starting and stopping the notebook
- A.2.2 Working in the notebook
- A.2.2.1 Entering headers
- A.2.2.2 Entering Markdown text
- A.2.2.3 Converting notebooks to other formats
- A.3.1 Editors for programming
- A.3.2 The two-windows approach
- A.3.3 Calling the editor from within IPython
- A.3.4 Calling IPython from within the editor
UM RAFBÆKUR Á HEIMKAUP.IS
Bókahillan þín er þitt svæði og þar eru bækurnar þínar geymdar. Þú kemst í bókahilluna þína hvar og hvenær sem er í tölvu eða snjalltæki. Einfalt og þægilegt!Rafbók til eignar
Rafbók til eignar þarf að hlaða niður á þau tæki sem þú vilt nota innan eins árs frá því bókin er keypt.
Þú kemst í bækurnar hvar sem er
Þú getur nálgast allar raf(skóla)bækurnar þínar á einu augabragði, hvar og hvenær sem er í bókahillunni þinni. Engin taska, enginn kyndill og ekkert vesen (hvað þá yfirvigt).
Auðvelt að fletta og leita
Þú getur flakkað milli síðna og kafla eins og þér hentar best og farið beint í ákveðna kafla úr efnisyfirlitinu. Í leitinni finnur þú orð, kafla eða síður í einum smelli.
Glósur og yfirstrikanir
Þú getur auðkennt textabrot með mismunandi litum og skrifað glósur að vild í rafbókina. Þú getur jafnvel séð glósur og yfirstrikanir hjá bekkjarsystkinum og kennara ef þeir leyfa það. Allt á einum stað.
Hvað viltu sjá? / Þú ræður hvernig síðan lítur út
Þú lagar síðuna að þínum þörfum. Stækkaðu eða minnkaðu myndir og texta með multi-level zoom til að sjá síðuna eins og þér hentar best í þínu námi.
Fleiri góðir kostir
- Þú getur prentað síður úr bókinni (innan þeirra marka sem útgefandinn setur)
- Möguleiki á tengingu við annað stafrænt og gagnvirkt efni, svo sem myndbönd eða spurningar úr efninu
- Auðvelt að afrita og líma efni/texta fyrir t.d. heimaverkefni eða ritgerðir
- Styður tækni sem hjálpar nemendum með sjón- eða heyrnarskerðingu
- Gerð : 208
- Höfundur : 14671
- Útgáfuár : 2017
- Leyfi : 379