Lýsing:
Modern Global Seismology, Second Edition , is a complete, self-contained primer on seismology, featuring extensive coverage of all related aspects—from observational data through prediction—and emphasizing the fundamental theories and physics governing seismic waves, both natural and anthropogenic. Based on thoroughly class-tested material, the text provides a unique perspective on Earth’s large-scale internal structure and dynamic processes, particularly earthquake sources, and the application of theory to the dynamic processes of the earth’s upper layer.
This insightful new edition is designed for accessibility and comprehension for graduate students entering the field. Exploration seismologists will also find it an invaluable resource on topics such as elastic-wave propagation, seismic instrumentation, and seismogram analysis. Includes more than 400 illustrations, from both recent and traditional research articles, to help readers visualize mathematical relationships, as well as boxed features to explain advanced topics Offers incisive treatments of seismic waves, waveform evaluation and modeling, and seismotectonics, as well as quantitative treatments of earthquake source mechanics and numerous examples of modern broadband seismic recordings Covers current seismic instruments and networks and demonstrates modern waveform inversion methods Includes extensive, updated references for further reading new to this edition Features reorganized chapters split into two sections, beginning with introductory content such as tectonics and seismogram analysis, and moving on to more advanced topics, including seismic wave excitation and propagation, multivariable and vector calculus, and tensor approaches Completely updated references and figures to bring the text up to date Includes all-new sections on recent advancements and to enhance examples and understanding Split into shorter chapters to allow more flexibility for instructors and easier access for researchers, and includes exercises.
Annað
- Höfundar: Charles J. Ammon, Aaron A. Velasco, Thorne Lay, Terry C. Wallace
- Útgáfa:2
- Útgáfudagur: 2020-10-13
- Engar takmarkanir á útprentun
- Engar takmarkanir afritun
- Format:Page Fidelity
- ISBN 13: 9780128165171
- Print ISBN: 9780128156797
- ISBN 10: 0128165170
Efnisyfirlit
- Foundations of Modern Global Seismology
- Copyright
- Contents
- Preface
- Preface
- Part I - Observational foundations of global seismology
- Part II: Theoretical foundations of seismology
- Preface
- 1 An overview of global seismology
- 1.1 The foundation of seismology: seismograms
- 1.2 The historical development of global seismology
- 1.3 The topics of global seismology
- 1.3.1 Seismic sources
- 1.3.2 Earthquake sources involving shear faulting
- 1.3.3 Seismic waves and seismograms
- 1.3.4 Quantification of earthquakes
- 1.3.5 Earthquake geographic distributions
- 1.3.6 Global faulting patterns and earthquake models
- 1.3.7 Earth's interior: radial Earth layering
- 1.3.8 Heterogeneous Earth models
- 1.3.9 Summary
- 1.4 Appendix: Great earthquakes, 1900-mid2020
- 2 An overview of earthquake and seismic-wave mechanics
- 2.1 Stress
- 2.2 Strain and rotation
- 2.3 Hooke's law
- 2.3.1 Elastic potential energy
- 2.4 Earthquakes: conceptual models
- 2.4.1 Elastic rebound
- 2.4.2 Rock friction and frictional sliding
- 2.4.3 Anelastic processes and postseismic relaxation
- 2.4.4 Earthquake scaling relations & stress drop
- 2.4.5 Stress drop, particle velocity, and rupture velocity
- 2.5 Seismic-waves: the elastic equations of motion
- 2.5.1 Harmonic motion
- 2.5.2 Seismic-wave attenuation
- Damped harmonic motion
- The quality factor, Q
- Damped harmonic motion
- 2.5.3 Seismic wave attenuation in Earth
- 2.6 Summary
- 3.1 Divergent boundaries
- 3.2 Transcurrent boundaries
- 3.3 Convergent boundaries
- 3.3.1 Subduction zones
- 3.3.2 Continental collisions
- 3.4 Intraplate earthquakes
- 3.5 Summary
- 4.1 Introduction
- 4.1.1 Seismic stations, networks, and arrays
- 4.2 Earthquake-related ground motions
- 4.3 Earth's continuous background motion
- 4.3.1 Ambient background motion power spectra
- 4.3.2 Power spectral density and time-domain ground motions
- 4.3.3 Horizontal and vertical ambient ground motions
- 4.3.4 Diurnal variation in ambient ground motions
- 4.3.5 Seasonal ambient ground motion variations
- 4.3.6 Reducing ambient motions in seismic data
- 4.4 Seismographic systems
- 4.4.1 Inertial pendulum seismometers
- 4.4.2 Electromagnetic seismographs
- 4.4.3 Digital recording and force-feedback sensors
- 4.5 Working with modern seismograms
- 4.5.1 Digital seismic recording systems
- 4.5.2 Removing instrument effects
- 4.5.3 Poles and zeros
- 4.5.4 Digital filters and signal decimation
- 4.5.5 Removing an instrument response by deconvolution
- 4.6 Seismometry's future
- 4.6.1 Seismometers everywhere
- 4.7 Summary
- 5.1 Terminology for seismograms
- 5.2 Characteristics of body wave seismograms
- 5.2.1 Local, regional, and upper mantle
- 5.2.2 Teleseismic
- 5.3 Surface-waves
- 5.4 Travel-time curves
- 5.5 Signal processing basics
- 5.5.1 Time representation of seismic signals
- 5.5.2 Frequency-domain representation of seismic signals
- 5.5.3 Convolution
- 5.6 Picking arrival times
- 5.7 Summary
- 6.1 Seismic arrival times
- 6.1.1 Seismic travel-time curves
- 6.2 Earthquake location with information from a single station
- 6.2.1 Inferring seismic source properties from seismogram characteristics
- 6.2.2 Inferring station-to-source distance & origin time using arrival times
- 6.2.3 Inferring station-to-source direction using ground motion polarization
- 6.3 Earthquake location with information from a seismic network
- 6.3.1 Epicenter estimation with tS - tP measurements
- 6.3.2 Origin-time estimation with Wadati diagrams
- 6.3.3 Refining locations using arrival-time residuals
- 6.4 Earthquake location as an inverse problem
- 6.4.1 A least-squares optimal location estimate
- 6.4.2 Halfspace arrival-time partial derivatives
- A numerical location example
- 6.5.1 Master-event methods
- 6.5.2 Joint epicenter/hypocenter determination methods
- 6.5.3 Double-difference methods
- 7.1 The energy in seismic waves
- 7.2 Earthquake magnitude scales
- 7.2.1 Local magnitude (ML)
- 7.2.2 Body-wave magnitude
- 7.2.3 Surface-wave magnitude (MS)
- 7.2.4 Other magnitude scales
- Regional magnitude, mb(Lg)
- Seismic coda magnitude
- 7.2.5 Magnitude saturation
- 7.3 Seismic energy, magnitude, and moment magnitude
- 7.4 Descriptive earthquake statistics
- 7.4.1 The Gutenberg-Richter relationship
- 7.4.2 Earthquake occurrence rates
- 7.5 Patterns in earthquake sequences
- 7.5.1 Foreshock patterns and earthquake nucleation
- 7.5.2 Aftershock patterns and rupture area
- 7.6 Earthquake catalogs
- 7.6.1 Modern earthquake catalogs
- 7.7 Summary
- 8.1 The earthquake cycle
- 8.2 Paleoseismology
- 8.3 Earthquake prediction
- 8.3.1 Long-term deformation and earthquake migration patterns
- 8.3.2 Precursory phenomena
- 8.4 Earthquake forecasting and hazard estimation
- 8.5 Earthquake interactions and triggering
- 8.5.1 Static triggering
- 8.5.2 Dynamic triggering
- 8.5.3 Other triggering
- 8.6 Earthquake early warning
- 8.7 Summary
- 9.1 Tsunami excitation
- 9.2 Tsunami propagation
- 9.3 Tsunami observation and monitoring
- 9.3.1 Onshore tsunami measurements
- 9.4 Tsunami forecasting and warning
- 9.5 Summary
- 10.1 Global Earth structure
- 10.2 Crustal structure
- 10.3 Upper-mantle structure
- 10.3.1 Discontinuities and anisotropy
- 10.4 Upper mantle heterogeneity
- 10.5 Lower-mantle structure
- 10.6 Structure of the core
- 10.7 Summary
- 11 Elasticity and seismic waves
- 11.1 Deformation, deformation gradients, and strain
- 11.1.1 Displacement gradients, strain, and rotation
- Normal strains
- Shear strains
- Rigid-body rotation
- 11.1.1 Displacement gradients, strain, and rotation
- 11.1 Deformation, deformation gradients, and strain
- 11.2 Stress
- 11.2.1 The stress tensor
- 11.2.2 Cauchy's relation
- Representative absolute stresses within Earth
- 11.2.3 The conservation of linear momentum - the equations of equilibrium
- 11.2.4 Conservation of angular momentum stress tensor symmetry
- 11.2.5 Principal stresses
- Tensors and tensor rotation
- 11.3.1 Hooke's law and linear elasticity
- Isotropic elastic materials
- Elastic moduli and parameters
- 11.3.2 The equations of motion for linearly elastic materials
- 11.4.1 The one-dimensional wave equation and solutions
- General solutions of the 1D wave equation
- Harmonic solutions of the 1D wave equation
- An approximate solution for an inhomogeneous 1D medium
- 11.4.2 Three-dimensional wave solutions
- Plane-wave phase and wavenumber vectors
- P- and S-wave displacements
- Wave polarization on seismograms
- 12.1 Wavefronts and rays
- 12.2 The Eikonal equations and seismic rays
- 12.3 Travel times in media with depth-dependent properties
- 12.3.1 The seismic ray parameter (horizontal slowness)
- 12.3.2 Ray-path curvature
- 12.3.3 Distance and travel-time formulas
- 12.3.4 Travel-time curves for continuous media
- 12.4 Travel times in spherical Earth models
- 12.4.1 Travel-time expressions for spherical Earth models
- 12.5 Travel times in layered Earth models
- The layer-over-a-halfspace model
- Hidden layers and blind zones
- 12.6 Body-wave travel-time tables
- 13.1 Geometric spreading in vertically varying media
- 13.2 Geometric spreading in spherical Earth models
- 13.2.1 Seismic-wave energy and amplitude
- 13.3 Body-wave attenuation
- 13.3.1 The standard-linear-solid attenuation model
- 13.3.2 Estimating Q in the seismic band
- 13.4 Seismic-wave reflection & transmission across geologic boundaries
- 13.4.1 P-waves at a fluid-fluid boundary
- Reflection variation with incidence angle / slowness
- 13.4.2 SH-waves at a solid-solid boundary
- 13.4.3 P- & S-waves at a solid-solid boundary
- 13.4.4 P- & S-waves at a solid-fluid boundary
- 13.4.5 P-S-wave reflection at a free surface
- The free-surface receiver functions
- 13.4.1 P-waves at a fluid-fluid boundary
- 14.1 Halfspace Rayleigh waves
- 14.1.1 Halfspace Rayleigh-wave speed
- 14.1.2 Halfspace Rayleigh-wave displacements
- A Poisson solid
- Surface-wave geometric spreading
- 14.3.1 Discrete dispersion
- 14.3.2 Continuous dispersion
- 14.3.3 Calculating group velocity
- 14.4.1 Measuring dispersion
- Group-velocity estimation
- Phase-velocity estimation
- 14.4.2 Surface-wave dispersion and shallow Earth structure
- 14.6.1 Geometric spreading
- 14.6.2 Attenuation
- 15.1 A vibrating string
- 15.2 A vibrating sphere
- 15.3 Earth's free oscillations
- 15.3.1 Observing Earth's natural frequencies of vibration
- Mode splitting
- Mode coupling
- 15.3.1 Observing Earth's natural frequencies of vibration
- 16.1 An ideal explosion
- 16.2 Faulting sources
- 16.2.1 Shear-faulting nomenclature
- 16.3 Earthquake P-wave "first motions"
- 16.4 Equivalent body forces for seismic sources
- 16.4.1 Seismic point-force sources
- 16.4.2 An ideal explosion
- 16.4.3 An ideal earthquake
- 16.4.3.1 Equivalent body force system non-uniqueness
- 16.5.1 Moment tensors and shear faulting
- Shear-faulting moment tensors in principle-axis coordinates
- Computing fault-normal and slip vectors from a moment tensor
- Computing seismic moment from a moment tensor
- 16.5.2 Non-double-couple seismic sources
- Moment-tensor decompositions
- 17.1 Elastostatics
- 17.1.1 Static displacement field due to a single force
- 17.1.2 Static displacement field due to a force couple
- 17.1.3 Static displacement field due to a double couple
- 17.2 Elastodynamics
- 17.2.1 Elastodynamic point-force displacements
- 17.2.2 Elastodynamic single-couple displacements
- 17.2.3 Moment-tensor radiation patterns
- 17.2.4 Elastodynamic double-couple displacements
- 17.3 Double-couple radiation patterns in geographic coordinates
- 17.3.1 Body-waves
- 17.3.2 Surface-waves
- 17.4 Estimating faulting geometry
- 17.4.1 P-wave first motion modeling
- 18.1 Rock fracture and fault rupture
- Earthquake rupture dynamics
- 18.1.1 Simple moment-rate function shapes
- Earthquake rupture dynamics
- 18.2.1 Rupture directivity
- 18.3.1 Simple earthquake spectra models
- 18.3.2 Earthquake self similarity
- 18.5.1 Source-spectrum estimation
- 18.6.1 Body waves
- 18.6.2 Surface waves
- Empirical Green's functions
- 19.1 Body waveform modeling - a point source
- 19.1.1 Fundamental fault responses
- 19.1.2 Teleseismic body-wave modeling
- 19.1.3 Moment-tensor inversion
- 19.1.4 Time-dependent moment-tensor inversion
- 19.2 Surface-wave modeling for the seismic source
- 19.3 Global centroid moment-tensor solutions
- 19.4 Iterative sub-event identification
- 19.5 Earthquake finite-fault models
- 20.1 Earth structure estimation using travel times
- 20.1.1 Herglotz-Wiechert inversion
- 20.1.2 Seismic traveltime tomography
- 20.1.3 Amplitude attenuation tomography
- 20.1.4 Surface-wave dispersion tomography
- 20.2 Discrete geophysical inversion
- 20.2.1 Surface-wave dispersion modeling
- 20.3 Earth structure estimation using seismic amplitudes and waveforms
- 20.3.1 P-wave receiver-function modeling
- 20.4 Full seismogram inversion
UM RAFBÆKUR Á HEIMKAUP.IS
Bókahillan þín er þitt svæði og þar eru bækurnar þínar geymdar. Þú kemst í bókahilluna þína hvar og hvenær sem er í tölvu eða snjalltæki. Einfalt og þægilegt!Rafbók til eignar
Rafbók til eignar þarf að hlaða niður á þau tæki sem þú vilt nota innan eins árs frá því bókin er keypt.
Þú kemst í bækurnar hvar sem er
Þú getur nálgast allar raf(skóla)bækurnar þínar á einu augabragði, hvar og hvenær sem er í bókahillunni þinni. Engin taska, enginn kyndill og ekkert vesen (hvað þá yfirvigt).
Auðvelt að fletta og leita
Þú getur flakkað milli síðna og kafla eins og þér hentar best og farið beint í ákveðna kafla úr efnisyfirlitinu. Í leitinni finnur þú orð, kafla eða síður í einum smelli.
Glósur og yfirstrikanir
Þú getur auðkennt textabrot með mismunandi litum og skrifað glósur að vild í rafbókina. Þú getur jafnvel séð glósur og yfirstrikanir hjá bekkjarsystkinum og kennara ef þeir leyfa það. Allt á einum stað.
Hvað viltu sjá? / Þú ræður hvernig síðan lítur út
Þú lagar síðuna að þínum þörfum. Stækkaðu eða minnkaðu myndir og texta með multi-level zoom til að sjá síðuna eins og þér hentar best í þínu námi.
Fleiri góðir kostir
- Þú getur prentað síður úr bókinni (innan þeirra marka sem útgefandinn setur)
- Möguleiki á tengingu við annað stafrænt og gagnvirkt efni, svo sem myndbönd eða spurningar úr efninu
- Auðvelt að afrita og líma efni/texta fyrir t.d. heimaverkefni eða ritgerðir
- Styður tækni sem hjálpar nemendum með sjón- eða heyrnarskerðingu
- Gerð : 208
- Höfundur : 17238
- Útgáfuár : 1995
- Leyfi : 380