Modelling Survival Data in Medical Research

Námskeið
- LÝÐ079F Lifunargreining
Lýsing:
Modelling Survival Data in Medical Research, Fourth Edition, describes the analysis of survival data, illustrated using a wide range of examples from biomedical research. Written in a non-technical style, it concentrates on how the techniques are used in practice. Starting with standard methods for summarising survival data, Cox regression and parametric modelling, the book covers many more advanced techniques, including interval-censoring, frailty modelling, competing risks, analysis of multiple events, and dependent censoring.
This new edition contains chapters on Bayesian survival analysis and use of the R software. Earlier chapters have been extensively revised and expanded to add new material on several topics. These include methods for assessing the predictive ability of a model, joint models for longitudinal and survival data, and modern methods for the analysis of interval-censored survival data. Features: Presents an accessible account of a wide range of statistical methods for analysing survival data Contains practical guidance on modelling survival data from the author’s many years of experience in teaching and consultancy Shows how Bayesian methods can be used to analyse survival data Includes details on how R can be used to carry out all the methods described, with guidance on the interpretation of the resulting output Contains many real data examples and additional data sets that can be used for coursework All data sets used are available in electronic format from the publisher’s website Modelling Survival Data in Medical Research, Fourth Edition, is an invaluable resource for statisticians in the pharmaceutical industry and biomedical research centres, research scientists and clinicians who are analysing their own data, and students following undergraduate or postgraduate courses in survival analysis.
Annað
- Höfundur: David Collett
- Útgáfa:4
- Útgáfudagur: 2023-05-31
- Hægt að prenta út 2 bls.
- Hægt að afrita 2 bls.
- Format:ePub
- ISBN 13: 9781000863185
- Print ISBN: 9781032252858
- ISBN 10: 1000863182
Efnisyfirlit
- Cover Page
- Half-Title Page
- Series Page
- Title Page
- Copyright Page
- Contents
- Preface
- Author Biography
- 1 Survival analysis
- 1.1 Applications of survival analysis
- 1.2 Special features of survival data
- 1.2.1 Censoring
- 1.2.2 Independent censoring
- 1.2.3 Study time and patient time
- 1.3 Some examples
- 1.4 Survivor, hazard, and cumulative hazard functions
- 1.4.1 The survivor function
- 1.4.2 The hazard function
- 1.4.3 The cumulative hazard function
- 1.5 Computer software for survival analysis
- 1.6 Further reading
- 2 Some non-parametric procedures
- 2.1 Estimating the survivor function
- 2.1.1 Life-table estimate of the survivor function
- 2.1.2 Kaplan-Meier estimate of the survivor function
- 2.1.3 Nelson-Aalen estimate of the survivor function
- 2.2 Standard error of the estimated survivor function
- 2.2.1 Standard error of the Kaplan-Meier estimate
- 2.2.2 Standard error of other estimates
- 2.2.3 Confidence intervals for values of the survivor function
- 2.3 Estimating the hazard function
- 2.3.1 Life-table estimate of the hazard function
- 2.3.2 Kaplan-Meier type estimate
- 2.3.3 Estimating the cumulative hazard function
- 2.4 Estimating the median and percentiles of survival times
- 2.5 Confidence intervals for the median and percentiles
- 2.6 Comparison of two groups of survival data
- 2.6.1 Hypothesis testing
- 2.6.2 The log-rank test
- 2.6.3 The Wilcoxon test
- 2.6.4 The Peto-Peto test
- 2.6.5 Comparison of the log-rank, Wilcoxon, and Peto-Peto tests
- 2.7 Comparison of three or more groups of survival data
- 2.8 Stratified tests
- 2.9 Log-rank test for trend
- 2.10 Further reading
- 2.1 Estimating the survivor function
- 3 The Cox regression model
- 3.1 Modelling the hazard function
- 3.1.1 A model for the comparison of two groups
- 3.1.2 The general proportional hazards model
- 3.2 The linear component of the model
- 3.2.1 Including a variate
- 3.2.2 Including a factor
- 3.2.3 Including an interaction
- 3.2.4 Including a mixed term
- 3.3 Fitting the Cox regression model
- 3.3.1 Likelihood function for the model
- 3.3.2 Treatment of ties
- 3.3.3 The Newton-Raphson procedure
- 3.4 Confidence intervals and hypothesis tests
- 3.4.1 Confidence intervals for hazard ratios
- 3.4.2 Two examples
- 3.5 Comparing alternative models
- 3.5.1 The statistic -2logL^
- 3.5.2 Comparing nested models
- 3.6 Strategy for model selection
- 3.6.1 Variable selection procedures
- 3.7 Variable selection using the lasso
- 3.7.1 The lasso in Cox regression modelling
- 3.7.2 Data preparation
- 3.8 Non-linear terms
- 3.8.1 Testing for non-linearity
- 3.8.2 Modelling non-linearity
- 3.8.3 Fractional polynomials
- 3.9 Interpretation of parameter estimates
- 3.9.1 Models with a variate
- 3.9.2 Models with a factor
- 3.9.3 Models with combinations of terms
- 3.10 Estimating the hazard and survivor functions
- 3.10.1 The special case of no covariates
- 3.10.2 Some approximations to estimates of baseline functions
- 3.11 Risk-adjusted survivor function
- 3.11.1 Risk-adjusted survivor function for groups of individuals
- 3.12 Concordance, predictive ability, and explained variation
- 3.12.1 Measures of concordance
- 3.12.2 Predictive ability
- 3.12.3 Explained variation in the Cox regression model
- 3.12.4 Measures of explained variation
- 3.12.5 Model validation
- 3.13 Time-dependent ROC curves
- 3.13.1 Sensitivity and specificity
- 3.13.2 Modelling the probability of disease
- 3.13.3 ROC curves
- 3.13.4 Time-dependent ROC curves
- 3.14 Proportional hazards and the log-rank test
- 3.15 Further reading
- 3.1 Modelling the hazard function
- 4 Model checking in the Cox regression model
- 4.1 Residuals for the Cox regression model
- 4.1.1 Cox-Snell residuals
- 4.1.2 Modified Cox-Snell residuals
- 4.1.3 Martingale residuals
- 4.1.4 Deviance residuals
- 4.1.5 Schoenfeld residuals
- 4.1.6 Score residuals
- 4.2 Assessment of model fit
- 4.2.1 Plots based on the Cox-Snell residuals
- 4.2.2 Plots based on the martingale and deviance residuals
- 4.2.3 Checking the functional form of covariates
- 4.3 Identification of influential observations
- 4.3.1 Influence of observations on a parameter estimate
- 4.3.2 Influence of observations on the set of parameter estimates
- 4.3.3 Treatment of influential observations
- 4.4 Testing the assumption of proportional hazards
- 4.4.1 The log-cumulative hazard plot
- 4.4.2 Use of Schoenfeld residuals
- 4.4.3 Tests for non-proportional hazards
- 4.4.4 Adding a time-dependent variable
- 4.5 Recommendations
- 4.6 Further reading
- 4.1 Residuals for the Cox regression model
- 5 Parametric regression models
- 5.1 Models for the hazard function
- 5.1.1 The exponential distribution
- 5.1.2 The Weibull distribution
- 5.1.3 The log-logistic distribution
- 5.1.4 The lognormal distribution
- 5.1.5 The Gompertz distribution
- 5.1.6 The gamma distribution
- 5.1.7 The inverse Gaussian distribution
- 5.1.8 Some other distributions
- 5.2 Assessing the suitability of a parametric model
- 5.3 Fitting a parametric model to a single sample
- 5.3.1 Likelihood function for randomly censored data
- 5.4 Fitting exponential and Weibull models
- 5.4.1 Fitting the exponential distribution
- 5.4.2 Fitting the Weibull distribution
- 5.4.3 Standard error of a percentile of the Weibull distribution
- 5.5 Comparison of two groups
- 5.5.1 Exploratory analysis
- 5.5.2 Fitting the model
- 5.6 The Weibull proportional hazards model
- 5.6.1 Fitting the model
- 5.6.2 Standard error of a percentile in the Weibull model
- 5.6.3 Log-linear form of the model
- 5.6.4 Exploratory analysis
- 5.7 Comparing alternative Weibull proportional hazards models
- 5.8 The Gompertz proportional hazards model
- 5.9 Model choice
- 5.10 Accelerated failure model for two groups
- 5.10.1 Comparison with the proportional hazards model
- 5.10.2 The percentile-percentile plot
- 5.11 The general accelerated failure time model
- 5.11.1 Log-linear form of the accelerated failure time model
- 5.12 Parametric accelerated failure time models
- 5.12.1 The Weibull accelerated failure time model
- 5.12.2 The log-logistic accelerated failure time model
- 5.12.3 The lognormal accelerated failure time model
- 5.13 Fitting and comparing accelerated failure time models
- 5.14 Explained variation in parametric models
- 5.14.1 Predictive ability of a parametric model
- 5.15 The proportional odds model
- 5.15.1 The log-logistic proportional odds model
- 5.16 Modelling cure rates
- 5.17 Effect of covariate adjustment
- 5.18 Further reading
- 5.1 Models for the hazard function
- 6 Flexible parametric models
- 6.1 Piecewise exponential model
- 6.2 Modelling using spline functions
- 6.2.1 B-splines
- 6.2.2 Restricted cubic splines
- 6.2.3 Number and position of the knots
- 6.3 Flexible models for the hazard function
- 6.4 Flexible models for the log-cumulative hazard function
- 6.5 Flexible proportional odds models
- 6.6 Further reading
- 7 Model checking in parametric models
- 7.1 Residuals for parametric models
- 7.1.1 Standardised residuals
- 7.1.2 Cox-Snell residuals
- 7.1.3 Martingale residuals
- 7.1.4 Deviance residuals
- 7.1.5 Score residuals
- 7.2 Residuals for particular parametric models
- 7.2.1 Weibull distribution
- 7.2.2 Log-logistic distribution
- 7.2.3 Lognormal distribution
- 7.2.4 Analysis of residuals
- 7.3 Comparing observed and fitted survivor functions
- 7.4 Identification of influential observations
- 7.4.1 Influence of observations on a parameter estimate
- 7.4.2 Influence of observations on the set of parameter estimates
- 7.5 Testing proportional hazards in the Weibull model
- 7.6 Further reading
- 7.1 Residuals for parametric models
- 8 Time-dependent variables
- 8.1 Types of time-dependent variables
- 8.1.1 Time-dependent coefficients
- 8.2 Modelling with time-dependent variables
- 8.2.1 Fitting models with time-dependent variables
- 8.3 Coding of time-dependent variables
- 8.4 Estimation of the survivor function
- 8.5 Model comparison and validation
- 8.5.1 Comparison of treatments
- 8.5.2 Assessing model adequacy
- 8.6 Some applications of time-dependent variables
- 8.6.1 Some examples
- 8.7 Joint modelling of longitudinal and survival data
- 8.7.1 Longitudinal modelling
- 8.7.2 A joint model
- 8.7.3 Some extensions to the joint model
- 8.8 Further reading
- 8.1 Types of time-dependent variables
- 9 Interval-censored survival data
- 9.1 Interval censoring
- 9.1.1 Current status data
- 9.2 Estimating the survivor function
- 9.2.1 Derivation of the estimated survivor function
- 9.3 Semi-parametric proportional hazards models
- 9.3.1 Semi-parametric Turnbull model
- 9.3.2 Piecewise exponential model for interval-censored data
- 9.4 Parametric models
- 9.5 Further reading
- 9.1 Interval censoring
- 10 Frailty models
- 10.1 Introduction to frailty
- 10.1.1 Random effects
- 10.1.2 Individual frailty
- 10.1.3 Shared frailty
- 10.2 Modelling individual frailty
- 10.2.1 Frailty distributions
- 10.2.2 Observable survivor and hazard functions
- 10.3 The gamma frailty distribution
- 10.3.1 Impact of frailty on an observable hazard function
- 10.3.2 Impact of frailty on an observable hazard ratio
- 10.4 Fitting parametric frailty models
- 10.4.1 Gamma frailty
- 10.5 Fitting semi-parametric frailty models
- 10.5.1 Lognormal frailty effects
- 10.5.2 Gamma frailty effects
- 10.6 Comparing models with frailty
- 10.6.1 Testing for the presence of frailty
- 10.7 The shared frailty model
- 10.7.1 Fitting the shared frailty model
- 10.7.2 Comparing shared frailty models
- 10.8 Some other aspects of frailty modelling
- 10.8.1 Model checking
- 10.8.2 Correlated frailty models
- 10.8.3 Dependence measures
- 10.8.4 Numerical problems in model fitting
- 10.9 Further reading
- 10.1 Introduction to frailty
- 11 Non-proportional hazards and institutional comparisons
- 11.1 Non-proportional hazards
- 11.1.1 Modelling the probability of an event at a given time
- 11.2 Stratified proportional hazards models
- 11.2.1 Non-proportional hazards between treatments
- 11.3 Restricted mean survival
- 11.3.1 Use of pseudo-values
- 11.4 Institutional comparisons
- 11.4.1 Interval estimate for the RAFR
- 11.4.2 Use of the Poisson regression model
- 11.4.3 Random institution effects
- 11.5 Further reading
- 11.1 Non-proportional hazards
- 12 Competing risks
- 12.1 Introduction to competing risks
- 12.2 Summarising competing risks data
- 12.2.1 Kaplan-Meier estimate of survivor function
- 12.3 Hazard and cumulative incidence functions
- 12.3.1 Cause-specific hazard function
- 12.3.2 Cause-specific cumulative incidence function
- 12.3.3 Some other functions of interest
- 12.4 Modelling cause-specific hazards
- 12.4.1 Likelihood functions for competing risks models
- 12.4.2 Parametric models for cumulative incidence functions
- 12.5 Modelling cause-specific incidence
- 12.5.1 The Fine and Gray competing risks model
- 12.6 Model checking
- 12.7 Further reading
- 13 Multiple events and event history modelling
- 13.1 Introduction to counting processes
- 13.1.1 Modelling the intensity function
- 13.1.2 Survival data as a counting process
- 13.1.3 Survival data in the counting process format
- 13.1.4 Robust estimation of the variance-covariance matrix
- 13.2 Modelling recurrent event data
- 13.2.1 The Anderson and Gill model
- 13.2.2 The Prentice, Williams, and Peterson model
- 13.3 Multiple events
- 13.3.1 The Wei, Lin, and Weissfeld model
- 13.4 Event history analysis
- 13.4.1 Models for event history analysis
- 13.5 Further reading
- 13.1 Introduction to counting processes
- 14 Dependent censoring
- 14.1 Identifying dependent censoring
- 14.2 Sensitivity to dependent censoring
- 14.2.1 A sensitivity analysis
- 14.2.2 Impact of dependent censoring
- 14.3 Modelling with dependent censoring
- 14.3.1 Cox regression model with dependent censoring
- 14.4 Further reading
- 15 Sample size requirements for a survival study
- 15.1 Distinguishing between two treatment groups
- 15.2 Calculating the required number of deaths
- 15.2.1 Derivation of the required number of deaths
- 15.3 Calculating the required number of patients
- 15.3.1 Derivation of the required number of patients
- 15.3.2 An approximate procedure
- 15.4 Further reading
- 16 Bayesian survival analysis
- 16.1 Bayes’ theorem
- 16.2 Bayesian inference
- 16.3 Bayesian models for survival data
- 16.3.1 Bayesian version of the simple exponential model
- 16.4 Incorporating prior knowledge
- 16.4.1 Non-informative prior information
- 16.4.2 Vague prior information
- 16.4.3 Substantial prior information
- 16.5 Summarising posterior information
- 16.5.1 Point estimates
- 16.5.2 Interval estimates
- 16.5.3 Bayesian hypothesis tests
- 16.6 Evaluating a posterior distribution
- 16.6.1 Rejection sampling
- 16.6.2 Sampling from a posterior distribution using MCMC
- 16.7 Predictive distributions
- 16.8 Bayesian model comparison
- 16.8.1 DIC statistic for comparing models
- 16.8.2 WAIC statistic for comparing models
- 16.9 Commentary
- 16.10 Further reading
- 17 Survival analysis with R
- 17.1 Introduction to R
- 17.2 Data input and editing
- 17.2.1 Reading and manipulating data from a file
- 17.2.2 R packages
- 17.3 Non-parametric procedures
- 17.4 The Cox regression model
- 17.4.1 Variable selection and the lasso
- 17.4.2 Measures of predictive ability and explained variation
- 17.4.3 Time-dependent ROC curves
- 17.5 Model checking in the Cox regression model
- 17.5.1 Analysis of residuals
- 17.5.2 Identification of influential observations
- 17.5.3 Testing the assumption of proportional hazards
- 17.6 Parametric survival models
- 17.7 Flexible parametric models
- 17.7.1 Piecewise exponential model
- 17.7.2 Models for the hazard function
- 17.7.3 Models for the log-cumulative hazard function
- 17.8 Model checking in parametric models
- 17.8.1 Influential values
- 17.8.2 Comparing observed and fitted survivor functions
- 17.9 Time-dependent variables
- 17.9.1 Time-varying coefficients
- 17.9.2 Joint modelling of longitudinal and survival data
- 17.10 Interval-censored data
- 17.10.1 NPMLE of the survivor function
- 17.10.2 Semi-parametric models for interval-censored data
- 17.10.3 Parametric models for interval-censored data
- 17.11 Frailty modelling
- 17.11.1 Fitting parametric frailty models with individual frailty
- 17.11.2 Fitting parametric frailty models with shared frailty
- 17.11.3 Fitting semi-parametric models with individual lognormal frailty
- 17.11.4 Fitting semi-parametric models with individual gamma frailty
- 17.11.5 Fitting semi-parametric models with shared frailty
- 17.12 Competing risks
- 17.12.1 Estimating and modelling cause-specific hazard functions
- 17.12.2 Estimating the cumulative incidence function
- 17.12.3 The Fine and Gray model for cumulative incidence
- 17.13 Multiple events and event history modelling
- 17.14 Dependent censoring
- 17.15 Bayesian survival analysis
- 17.15.1 Bayesian parametric modelling
- 17.15.2 Bayesian semi-parametric modelling
- 17.15.3 Flexible models for the hazard function
- 17.16 Further reading
- A Maximum likelihood estimation
- A.1 Inference about a single unknown parameter
- A.2 Inference about a vector of unknown parameters
- B Additional data sets
- B.1 Chronic active hepatitis
- B.2 Recurrence of bladder cancer
- B.3 Survival of black ducks
- B.4 Bone marrow transplantation
- B.5 Chronic granulomatous disease
- Bibliography
- Index of examples
- Index
UM RAFBÆKUR Á HEIMKAUP.IS
Bókahillan þín er þitt svæði og þar eru bækurnar þínar geymdar. Þú kemst í bókahilluna þína hvar og hvenær sem er í tölvu eða snjalltæki. Einfalt og þægilegt!Rafbók til eignar
Rafbók til eignar þarf að hlaða niður á þau tæki sem þú vilt nota innan eins árs frá því bókin er keypt.
Þú kemst í bækurnar hvar sem er
Þú getur nálgast allar raf(skóla)bækurnar þínar á einu augabragði, hvar og hvenær sem er í bókahillunni þinni. Engin taska, enginn kyndill og ekkert vesen (hvað þá yfirvigt).
Auðvelt að fletta og leita
Þú getur flakkað milli síðna og kafla eins og þér hentar best og farið beint í ákveðna kafla úr efnisyfirlitinu. Í leitinni finnur þú orð, kafla eða síður í einum smelli.
Glósur og yfirstrikanir
Þú getur auðkennt textabrot með mismunandi litum og skrifað glósur að vild í rafbókina. Þú getur jafnvel séð glósur og yfirstrikanir hjá bekkjarsystkinum og kennara ef þeir leyfa það. Allt á einum stað.
Hvað viltu sjá? / Þú ræður hvernig síðan lítur út
Þú lagar síðuna að þínum þörfum. Stækkaðu eða minnkaðu myndir og texta með multi-level zoom til að sjá síðuna eins og þér hentar best í þínu námi.
Fleiri góðir kostir
- Þú getur prentað síður úr bókinni (innan þeirra marka sem útgefandinn setur)
- Möguleiki á tengingu við annað stafrænt og gagnvirkt efni, svo sem myndbönd eða spurningar úr efninu
- Auðvelt að afrita og líma efni/texta fyrir t.d. heimaverkefni eða ritgerðir
- Styður tækni sem hjálpar nemendum með sjón- eða heyrnarskerðingu
- Gerð : 208
- Höfundur : 14510
- Útgáfuár : 2015
- Leyfi : 380