Introduction to Seismology
Námskeið
- JEÐ505M Jarðskjálftafræði
Lýsing:
This third edition provides a concise yet approachable introduction to seismic theory, designed as a first course for graduate students or advanced undergraduate students. It clearly explains the fundamental concepts, emphasizing intuitive understanding over lengthy derivations, and outlines the different types of seismic waves and how they can be used to resolve Earth structure and understand earthquakes.
New material and updates have been added throughout, including ambient noise methods, shear-wave splitting, back-projection, migration and velocity analysis in reflection seismology, earthquake rupture directivity, and fault weakening mechanisms. A wealth of both reworked and new examples, review questions and computer-based exercises in MATLAB®/Python give students the opportunity to apply the techniques they have learned to compute results of interest and to illustrate Earth's seismic properties.
Annað
- Höfundur: Peter M. Shearer
- Útgáfa:3
- Útgáfudagur: 2019-05-30
- Engar takmarkanir á útprentun
- Engar takmarkanir afritun
- Format:Page Fidelity
- ISBN 13: 9781316886809
- Print ISBN: 9781107184473
- ISBN 10: 1316886808
Efnisyfirlit
- Half-title page
- Endorsement page
- Title page
- Copyright page
- Brief Contents
- Contents
- Preface
- Acknowledgments
- 1 Introduction
- 1.1 A Brief History of Seismology
- 1.1.1 Recent Advances
- 1.2 Exercises
- 1.1 A Brief History of Seismology
- 2 Stress and Strain
- 2.1 The Stress Tensor
- 2.1.1 Example: Computing the Traction Vector
- 2.1.2 Principal Axes of Stress
- 2.1.3 Example: Computing the Principal Axes
- 2.1.4 Deviatoric Stress
- 2.1.5 Values for Stress
- 2.2 The Strain Tensor
- 2.2.1 Values for Strain
- 2.2.2 Example: Computing Strain for a Seismic Wave
- 2.3 The Linear Stress–Strain Relationship
- 2.3.1 Units for Elastic Moduli
- 2.4 Exercises
- 2.1 The Stress Tensor
- 3 The Seismic Wave Equation
- 3.1 Introduction: The Wave Equation
- 3.2 The Momentum Equation
- 3.3 The Seismic Wave Equation
- 3.3.1 Potentials
- 3.4 Plane Waves
- 3.4.1 Example: Harmonic Plane Wave Equation
- 3.5 Polarizations of P- and S-Waves
- 3.6 Spherical Waves
- 3.7 Methods for Computing Synthetic Seismograms[sup(†)]
- 3.7.1 Discrete Modeling Methods[sup(†)]
- 3.7.2 Equations for 2-D Isotropic Finite Differences[sup(†)]
- 3.8 Exercises
- 4 Ray Theory: Travel Times
- 4.1 Snell's Law
- 4.2 Ray Paths for Laterally Homogeneous Models
- 4.2.1 Example: Computing X(p) and T(p)
- 4.2.2 Ray Tracing through Velocity Gradients
- 4.3 Travel Time Curves and Delay Times
- 4.3.1 Reduced Velocity
- 4.3.2 The τ(p) Function
- 4.3.3 Example: Computing τ(p)
- 4.3.4 Low-Velocity Zones
- 4.4 Summary of 1-D Ray Tracing Equations
- 4.5 Spherical Earth Ray Tracing
- 4.5.1 The Earth-Flattening Transformation
- 4.6 Three-Dimensional Ray Tracing[sup(†)]
- 4.7 Ray Nomenclature
- 4.7.1 Crustal Phases
- 4.7.2 Whole Earth Phases
- 4.7.3 PKJKP: The Holy Grail of Body Wave Seismology
- 4.8 Global Body Wave Observations
- 4.8.1 Uses of Global Body-Wave Phases
- 4.9 Exercises
- 5 Inversion of Travel Time Data
- 5.1 One-Dimensional Velocity Inversion Theory
- 5.2 Straight-Line Fitting
- 5.2.1 Example: Solving for a Layer Cake Model
- 5.2.2 Other Ways to Fit the T(X) Curve
- 5.3 τ(p) Inversion
- 5.3.1 Example: The Layer Cake Model Revisited
- 5.3.2 Resolving τ(p) and the Slant-Stack Method
- 5.3.3 Linear Programming and Regularization Methods
- 5.4 Summary: One-Dimensional Velocity Inversion
- 5.5 Three-Dimensional Velocity Inversion
- 5.5.1 Setting Up the Tomography Problem
- 5.5.2 Example: Toy Tomography Problem
- 5.5.3 Solving the Tomography Problem
- 5.5.4 Tomography Complications
- 5.5.5 Finite Frequency Tomography and Full Waveform Inversion
- 5.6 Earthquake Location
- 5.6.1 Iterative Location Methods
- 5.6.2 Relative Event Location Methods
- 5.7 Exercises
- 6 Ray Theory: Amplitude and Phase
- 6.1 Energy in Seismic Waves
- 6.2 Geometrical Spreading in 1-D Velocity Models
- 6.3 Reflection and Transmission Coefficients
- 6.3.1 SH-Wave Reflection and Transmission Coefficients
- 6.3.2 Example: Computing SH Coefficients
- 6.3.3 Vertical Incidence Coefficients
- 6.3.4 Energy-Normalized Coefficients
- 6.3.5 Dependence on Ray Angle
- 6.4 Turning Points and Hilbert Transforms
- 6.5 Propagator Matrix Methods for Modeling Plane Waves[sup(†)]
- 6.6 Attenuation
- 6.6.1 Example: Computing Intrinsic Attenuation
- 6.6.2 t* and Velocity Dispersion
- 6.6.3 The Absorption Band Model[sup(†)]
- 6.6.4 The Standard Linear Solid[sup(†)]
- 6.6.5 Earth's Attenuation
- 6.6.6 Observing Q
- 6.6.7 Nonlinear Attenuation
- 6.6.8 Seismic Attenuation and Global Politics
- 6.7 Exercises
- 7 Reflection Seismology and Related Topics
- 7.1 Background
- 7.2 Zero-Offset Sections
- 7.3 Common Midpoint Stacking
- 7.3.1 Example: Computing Normal Moveout
- 7.4 Sources and Deconvolution
- 7.5 Migration
- 7.5.1 Huygens's Principle
- 7.5.2 Diffraction Hyperbolas
- 7.5.3 Example: Computing Diffraction Hyperbolas
- 7.5.4 Migration Methods
- 7.6 Velocity Analysis
- 7.6.1 Example: Estimating Layer Velocity and Thickness
- 7.6.2 Statics Corrections
- 7.7 Back-projection
- 7.7.1 The Adjoint Operator as an Inversion Method[sup(†)]
- 7.8 Receiver Functions
- 7.9 The Language of Reflection Seismology
- 7.10 Exercises
- 8 Surface Waves and Normal Modes
- 8.1 Love Waves
- 8.1.1 Solution for a Single Layer
- 8.1.2 Example: Computing Love Wave Dispersion
- 8.2 Rayleigh Waves
- 8.3 Dispersion
- 8.4 Global Surface Waves
- 8.5 Observing Surface Waves
- 8.5.1 Example: Measuring Group and Phase Velocity
- 8.6 Normal Modes
- 8.7 Exercises
- 8.1 Love Waves
- 9 Earthquakes and Source Theory
- 9.1 Green's Functions and the Moment Tensor
- 9.2 Earthquake Faults
- 9.2.1 Non-Double-Couple Sources
- 9.3 Radiation Patterns and Beach Balls
- 9.3.1 Example: Plotting a Focal Mechanism
- 9.4 Far-Field Pulse Shapes
- 9.4.1 Directivity
- 9.4.2 Example: 2004 Sumatra Earthquake Directivity
- 9.4.3 Source Spectra
- 9.4.4 Empirical Green's Functions
- 9.5 Stress Drop
- 9.5.1 Example: Estimating Stress Drop
- 9.5.2 Self-Similar Earthquake Scaling
- 9.6 Radiated Seismic Energy
- 9.6.1 Earthquake Energy Partitioning[sup(†)]
- 9.7 Earthquake Magnitude
- 9.7.1 The b-Value
- 9.7.2 Example: Use of b-Value
- 9.7.3 The Intensity Scale
- 9.8 Finite Slip Modeling
- 9.9 The Heat Flow Paradox
- 9.9.1 Why Are Faults Weak?
- 9.10 Exercises
- 10 Earthquake Prediction
- 10.1 The Earthquake Cycle
- 10.2 Earthquake Triggering
- 10.3 Searching for Precursors
- 10.4 Are Earthquakes Unpredictable?
- 10.5 Exercises
- 11 Seismometers and Seismographs
- 11.1 Seismometer as Damped Harmonic Oscillator
- 11.2 Short-Period and Long-Period Seismograms
- 11.3 Modern Seismographs
- 11.4 Exercises
- 12 Earth Noise
- 12.1 Earth's Background Noise
- 12.2 Cross-Correlation Analysis of Ambient Noise
- 12.3 Exercises
- 13 Anisotropy
- 13.1 Rays and Wavefronts for Anisotropy
- 13.2 Eigenvalue Equation for Anisotropic Media
- 13.2.1 Slowness Surfaces
- 13.2.2 Snell's Law at an Interface
- 13.3 Weak Anisotropy
- 13.4 Hexagonal Anisotropy
- 13.5 Shear-Wave Splitting
- 13.5.1 Linear Polarization Analysis
- 13.5.2 Estimating Shear-Wave Splitting Parameters
- 13.5.3 Example: Shear-Wave Splitting Observed at RSON
- 13.5.4 SKS Splitting
- 13.5.5 Example: SKS Splitting Analysis for RSON
- 13.5.6 Shear-Wave Splitting Observations
- 13.6 Mechanisms for Anisotropy
- 13.7 Earth's Anisotropy
- 13.8 Exercises
- Appendix A The PREM Model
- Appendix B Math Review
- B.1 Vector Calculus
- B.2 Complex Numbers
- Appendix C The Eikonal Equation
- Appendix D Python Functions
- Appendix E Time Series and Fourier Transforms
- E.1 Convolution
- E.2 Fourier Transform
- E.3 Hilbert Transform
- Appendix F Kirchhoff Theory
- F.1 Kirchhoff Applications
- F.2 How to Write a Kirchhoff Program
- F.3 Kirchhoff Migration
- Bibliography
- Index
UM RAFBÆKUR Á HEIMKAUP.IS
Bókahillan þín er þitt svæði og þar eru bækurnar þínar geymdar. Þú kemst í bókahilluna þína hvar og hvenær sem er í tölvu eða snjalltæki. Einfalt og þægilegt!Rafbók til eignar
Rafbók til eignar þarf að hlaða niður á þau tæki sem þú vilt nota innan eins árs frá því bókin er keypt.
Þú kemst í bækurnar hvar sem er
Þú getur nálgast allar raf(skóla)bækurnar þínar á einu augabragði, hvar og hvenær sem er í bókahillunni þinni. Engin taska, enginn kyndill og ekkert vesen (hvað þá yfirvigt).
Auðvelt að fletta og leita
Þú getur flakkað milli síðna og kafla eins og þér hentar best og farið beint í ákveðna kafla úr efnisyfirlitinu. Í leitinni finnur þú orð, kafla eða síður í einum smelli.
Glósur og yfirstrikanir
Þú getur auðkennt textabrot með mismunandi litum og skrifað glósur að vild í rafbókina. Þú getur jafnvel séð glósur og yfirstrikanir hjá bekkjarsystkinum og kennara ef þeir leyfa það. Allt á einum stað.
Hvað viltu sjá? / Þú ræður hvernig síðan lítur út
Þú lagar síðuna að þínum þörfum. Stækkaðu eða minnkaðu myndir og texta með multi-level zoom til að sjá síðuna eins og þér hentar best í þínu námi.
Fleiri góðir kostir
- Þú getur prentað síður úr bókinni (innan þeirra marka sem útgefandinn setur)
- Möguleiki á tengingu við annað stafrænt og gagnvirkt efni, svo sem myndbönd eða spurningar úr efninu
- Auðvelt að afrita og líma efni/texta fyrir t.d. heimaverkefni eða ritgerðir
- Styður tækni sem hjálpar nemendum með sjón- eða heyrnarskerðingu
- Gerð : 208
- Höfundur : 17214
- Útgáfuár : 2019
- Leyfi : 380