Incropera's Principles of Heat and Mass Transfer: Global Edition
Námskeið VÉL601G Varmaflutningsfræði - Höfundar: Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera, David P. DeWitt
4.490 kr.
Námskeið
- VÉL601G Varmaflutningsfræði
Lýsing:
Incropera's Fundamentals of Heat and Mass Transfer has been the gold standard of heat transfer pedagogy for many decades, with a commitment to continuous improvement by four authors’ with more than 150 years of combined experience in heat transfer education, research and practice. Applying the rigorous and systematic problem-solving methodology that this text pioneered an abundance of examples and problems reveal the richness and beauty of the discipline.
Annað
- Höfundar: Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera, David P. DeWitt
- Útgáfa:1
- Útgáfudagur: 2017-11-01
- Hægt að prenta út 10 bls.
- Hægt að afrita 2 bls.
- Format:ePub
- ISBN 13: 9781119409090
- Print ISBN: 9781119382911
- ISBN 10: 1119409098
Efnisyfirlit
- Cover
- Copyright
- Preface
- Contents
- Symbols
- Chapter 1 Introduction
- 1.1 What and How?
- 1.2 Physical Origins and Rate Equations
- 1.2.1 Conduction
- 1.2.2 Convection
- 1.2.3 Radiation
- 1.2.4 The Thermal Resistance Concept
- 1.3 Relationship to Thermodynamics
- 1.3.1 Relationship to the First Law of Thermodynamics (Conservation of Energy)
- 1.3.2 Relationship to the Second Law of Thermodynamics and the Efficiency of Heat Engines
- 1.4 Units and Dimensions
- 1.5 Analysis of Heat Transfer Problems: Methodology
- 1.6 Relevance of Heat Transfer
- 1.7 Summary
- References
- Problems
- 2.1 The Conduction Rate Equation
- 2.2 The Thermal Properties of Matter
- 2.2.1 Thermal Conductivity
- 2.2.2 Other Relevant Properties
- 2.3 The Heat Diffusion Equation
- 2.4 Boundary and Initial Conditions
- 2.5 Summary
- References
- Problems
- 3.1 The Plane Wall
- 3.1.1 Temperature Distribution
- 3.1.2 Thermal Resistance
- 3.1.3 The Composite Wall
- 3.1.4 Contact Resistance
- 3.1.5 Porous Media
- 3.2 An Alternative Conduction Analysis
- 3.3 Radial Systems
- 3.3.1 The Cylinder
- 3.3.2 The Sphere
- 3.4 Summary of One-Dimensional Conduction Results
- 3.5 Conduction with Thermal Energy Generation
- 3.5.1 The Plane Wall
- 3.5.2 Radial Systems
- 3.5.3 Tabulated Solutions
- 3.5.4 Application of Resistance Concepts
- 3.6 Heat Transfer from Extended Surfaces
- 3.6.1 A General Conduction Analysis
- 3.6.2 Fins of Uniform Cross-Sectional Area
- 3.6.3 Fin Performance Parameters
- 3.6.4 Fins of Nonuniform Cross-Sectional Area
- 3.6.5 Overall Surface Efficiency
- 3.7 Other Applications of One-Dimensional, Steady-State Conduction
- 3.7.1 The Bioheat Equation
- 3.7.2 Thermoelectric Power Generation
- 3.7.3 Nanoscale Conduction
- 3.8 Summary
- References
- Problems
- 4.1 General Considerations and Solution Techniques
- 4.2 The Method of Separation of Variables
- 4.3 The Conduction Shape Factor and the Dimensionless Conduction Heat Rate
- 4.4 Finite-Difference Equations
- 4.4.1 The Nodal Network
- 4.4.2 Finite-Difference Form of the Heat Equation: No Generation and Constant Properties
- 4.4.3 Finite-Difference Form of the Heat Equation: The Energy Balance Method
- 4.5 Solving the Finite-Difference Equations
- 4.5.1 Formulation as a Matrix Equation
- 4.5.2 Verifying the Accuracy of the Solution
- 4.6 Summary
- References
- Problems
- 5.1 The Lumped Capacitance Method
- 5.2 Validity of the Lumped Capacitance Method
- 5.3 General Lumped Capacitance Analysis
- 5.3.1 Radiation Only
- 5.3.2 Negligible Radiation
- 5.3.3 Convection Only with Variable Convection Coefficient
- 5.3.4 Additional Considerations
- 5.4 Spatial Effects
- 5.5 The Plane Wall with Convection
- 5.5.1 Exact Solution
- 5.5.2 Approximate Solution
- 5.5.3 Total Energy Transfer: Approximate Solution
- 5.5.4 Additional Considerations
- 5.6 Radial Systems with Convection
- 5.6.1 Exact Solutions
- 5.6.2 Approximate Solutions
- 5.6.3 Total Energy Transfer: Approximate Solutions
- 5.6.4 Additional Considerations
- 5.7 The Semi-Infinite Solid
- 5.8 Objects with Constant Surface Temperatures or Surface Heat Fluxes
- 5.8.1 Constant Temperature Boundary Conditions
- 5.8.2 Constant Heat Flux Boundary Conditions
- 5.8.3 Approximate Solutions
- 5.9 Periodic Heating
- 5.10 Finite-Difference Methods
- 5.10.1 Discretization of the Heat Equation: The Explicit Method
- 5.10.2 Discretization of the Heat Equation: The Implicit Method
- 5.11 Summary
- References
- Problems
- 6.1 The Convection Boundary Layers
- 6.1.1 The Velocity Boundary Layer
- 6.1.2 The Thermal Boundary Layer
- 6.1.3 The Concentration Boundary Layer
- 6.1.4 Significance of the Boundary Layers
- 6.2 Local and Average Convection Coefficients
- 6.2.1 Heat Transfer
- 6.2.2 Mass Transfer
- 6.3 Laminar and Turbulent Flow
- 6.3.1 Laminar and Turbulent Velocity Boundary Layers
- 6.3.2 Laminar and Turbulent Thermal and Species Concentration Boundary Layers
- 6.4 The Boundary Layer Equations
- 6.4.1 Boundary Layer Equations for Laminar Flow
- 6.4.2 Compressible Flow
- 6.5 Boundary Layer Similarity: The Normalized Boundary Layer Equations
- 6.5.1 Boundary Layer Similarity Parameters
- 6.5.2 Dependent Dimensionless Parameters
- 6.6 Physical Interpretation of the Dimensionless Parameters
- 6.7 Boundary Layer Analogies
- 6.7.1 The Heat and Mass Transfer Analogy
- 6.7.2 Evaporative Cooling
- 6.7.3 The Reynolds Analogy
- 6.8 Summary
- References
- Problems
- 7.1 The Empirical Method
- 7.2 The Flat Plate in Parallel Flow
- 7.2.1 Laminar Flow over an Isothermal Plate: A Similarity Solution
- 7.2.2 Turbulent Flow over an Isothermal Plate
- 7.2.3 Mixed Boundary Layer Conditions
- 7.2.4 Unheated Starting Length
- 7.2.5 Flat Plates with Constant Heat Flux Conditions
- 7.2.6 Limitations on Use of Convection Coefficients
- 7.3 Methodology for a Convection Calculation
- 7.4 The Cylinder in Cross Flow
- 7.4.1 Flow Considerations
- 7.4.2 Convection Heat and Mass Transfer
- 7.5 The Sphere
- 7.6 Flow Across Banks of Tubes
- 7.7 Impinging Jets
- 7.7.1 Hydrodynamic and Geometric Considerations
- 7.7.2 Convection Heat and Mass Transfer
- 7.8 Packed Beds
- 7.9 Summary
- References
- Problems
- 8.1 Hydrodynamic Considerations
- 8.1.1 Flow Conditions
- 8.1.2 The Mean Velocity
- 8.1.3 Velocity Profile in the Fully Developed Region
- 8.1.4 Pressure Gradient and Friction Factor in Fully Developed Flow
- 8.2 Thermal Considerations
- 8.2.1 The Mean Temperature
- 8.2.2 Newton’s Law of Cooling
- 8.2.3 Fully Developed Conditions
- 8.3 The Energy Balance
- 8.3.1 General Considerations
- 8.3.2 Constant Surface Heat Flux
- 8.3.3 Constant Surface Temperature
- 8.4 Laminar Flow in Circular Tubes: Thermal Analysis and Convection Correlations
- 8.4.1 The Fully Developed Region
- 8.4.2 The Entry Region
- 8.4.3 Temperature-Dependent Properties
- 8.5 Convection Correlations: Turbulent Flow in Circular Tubes
- 8.6 Convection Correlations: Noncircular Tubes and the Concentric Tube Annulus
- 8.7 Heat Transfer Enhancement
- 8.8 Forced Convection in Small Channels
- 8.8.1 Microscale Convection in Gases (0.1 µn ≲ Dh ≲ 100 µm)
- 8.8.2 Microscale Convection in Liquids
- 8.8.3 Nanoscale Convection (Dh ≲ 100 nm)
- 8.9 Convection Mass Transfer
- 8.10 Summary
- References
- Problems
- 9.1 Physical Considerations
- 9.2 The Governing Equations for Laminar Boundary Layers
- 9.3 Similarity Considerations
- 9.4 Laminar Free Convection on a Vertical Surface
- 9.5 The Effects of Turbulence
- 9.6 Empirical Correlations: External Free Convection Flows
- 9.6.1 The Vertical Plate
- 9.6.2 Inclined and Horizontal Plates
- 9.6.3 The Long Horizontal Cylinder
- 9.6.4 Spheres
- 9.7 Free Convection Within Parallel Plate Channels
- 9.7.1 Vertical Channels
- 9.7.2 Inclined Channels
- 9.8 Empirical Correlations: Enclosures
- 9.8.1 Rectangular Cavities
- 9.8.2 Concentric Cylinders
- 9.8.3 Concentric Spheres
- 9.9 Combined Free and Forced Convection
- 9.10 Convection Mass Transfer
- 9.11 Summary
- References
- Problems
- 10.1 Dimensionless Parameters in Boiling and Condensation
- 10.2 Boiling Modes
- 10.3 Pool Boiling
- 10.3.1 The Boiling Curve
- 10.3.2 Modes of Pool Boiling
- 10.4 Pool Boiling Correlations
- 10.4.1 Nucleate Pool Boiling
- 10.4.2 Critical Heat Flux for Nucleate Pool Boiling
- 10.4.3 Minimum Heat Flux
- 10.4.4 Film Pool Boiling
- 10.4.5 Parametric Effects on Pool Boiling
- 10.5 Forced Convection Boiling
- 10.5.1 External Forced Convection Boiling
- 10.5.2 Two-Phase Flow
- 10.5.3 Two-Phase Flow in Microchannels
- 10.6 Condensation: Physical Mechanisms
- 10.7 Laminar Film Condensation on a Vertical Plate
- 10.8 Turbulent Film Condensation
- 10.9 Film Condensation on Radial Systems
- 10.10 Condensation in Horizontal Tubes
- 10.11 Dropwise Condensation
- 10.12 Summary
- References
- Problems
- 11.1 Heat Exchanger Types
- 11.2 The Overall Heat Transfer Coefficient
- 11.3 Heat Exchanger Analysis: Use of the Log Mean Temperature Difference
- 11.3.1 The Parallel-Flow Heat Exchanger
- 11.3.2 The Counterflow Heat Exchanger
- 11.3.3 Special Operating Conditions
- 11.4 Heat Exchanger Analysis: The Effectiveness–NTU Method
- 11.4.1 Definitions
- 11.4.2 Effectiveness–NTU Relations
- 11.5 Heat Exchanger Design and Performance Calculations
- 11.6 Additional Considerations
- 11.7 Summary
- References
- Problems
- 12.1 Fundamental Concepts
- 12.2 Radiation Heat Fluxes
- 12.3 Radiation Intensity
- 12.3.1 Mathematical Definitions
- 12.3.2 Radiation Intensity and Its Relation to Emission
- 12.3.3 Relation to Irradiation
- 12.3.4 Relation to Radiosity for an Opaque Surface
- 12.3.5 Relation to the Net Radiative Flux for an Opaque Surface
- 12.4 Blackbody Radiation
- 12.4.1 The Planck Distribution
- 12.4.2 Wien’s Displacement Law
- 12.4.3 The Stefan–Boltzmann Law
- 12.4.4 Band Emission
- 12.5 Emission from Real Surfaces
- 12.6 Absorption, Reflection, and Transmission by Real Surfaces
- 12.6.1 Absorptivity
- 12.6.2 Reflectivity
- 12.6.3 Transmissivity
- 12.6.4 Special Considerations
- 12.7 Kirchhoff’s Law
- 12.8 The Gray Surface
- 12.9 Environmental Radiation
- 12.9.1 Solar Radiation
- 12.9.2 The Atmospheric Radiation Balance
- 12.9.3 Terrestrial Solar Irradiation
- 12.10 Summary
- References
- Problems
- 13.1 The View Factor
- 13.1.1 The View Factor Integral
- 13.1.2 View Factor Relations
- 13.2 Blackbody Radiation Exchange
- 13.3 Radiation Exchange Between Opaque, Diffuse, Gray Surfaces in an Enclosure
- 13.3.1 Net Radiation Exchange at a Surface
- 13.3.2 Radiation Exchange Between Surfaces
- 13.3.3 The Two-Surface Enclosure
- 13.3.4 Two-Surface Enclosures in Series and Radiation Shields
- 13.3.5 The Reradiating Surface
- 13.4 Multimode Heat Transfer
- 13.5 Implications of the Simplifying Assumptions
- 13.6 Radiation Exchange with Participating Media
- 13.6.1 Volumetric Absorption
- 13.6.2 Gaseous Emission and Absorption
- 13.7 Summary
- References
- Problems
- 14.1 Physical Origins and Rate Equations
- 14.1.1 Physical Origins
- 14.1.2 Mixture Composition
- 14.1.3 Fick’s Law of Diffusion
- 14.1.4 Mass Diffusivity
- 14.2 Mass Transfer in Nonstationary Media
- 14.2.1 Absolute and Diffusive Species Fluxes
- 14.2.2 Evaporation in a Column
- 14.3 The Stationary Medium Approximation
- 14.4 Conservation of Species for a Stationary Medium
- 14.4.1 Conservation of Species for a Control Volume
- 14.4.2 The Mass Diffusion Equation
- 14.4.3 Stationary Media with Specified Surface Concentrations
- 14.5 Boundary Conditions and Discontinuous Concentrations at Interfaces
- 14.5.1 Evaporation and Sublimation
- 14.5.2 Solubility of Gases in Liquids and Solids
- 14.5.3 Catalytic Surface Reactions
- 14.6 Mass Diffusion with Homogeneous Chemical Reactions
- 14.7 Transient Diffusion
- 14.8 Summary
- References
- Problems
- E.1 Conservation of Mass
- E.2 Newton’s Second Law of Motion
- E.3 Conservation of Energy
- E.4 Conservation of Species
- 4S.1 The Graphical Method
- 4S.1.1 Methodology of Constructing a Flux Plot
- 4S.1.2 Determination of the Heat Transfer Rate
- 4S.1.3 The Conduction Shape Factor
- 4S.2 The Gauss-Seidel Method: Example of Usage
- References
- Problems
- 5S.1 Graphical Representation of One-Dimensional, Transient Conduction in the Plane Wall, Long Cylinder, and Sphere
- 5S.2 Analytical Solutions of Multidimensional Effects
- References
- Problems
- 6S.1 Derivation of the Convection Transfer Equations
- 6S.1.1 Conservation of Mass
- 6S.1.2 Newton’s Second Law of Motion
- 6S.1.3 Conservation of Energy
- 6S.1.4 Conservation of Species
- References
- Problems
- 11S.1 Log Mean Temperature Difference Method for Multipass and Cross-Flow Heat Exchangers
- 11S.2 Compact Heat Exchangers
- References
- Problems
UM RAFBÆKUR Á HEIMKAUP.IS
Bókahillan þín er þitt svæði og þar eru bækurnar þínar geymdar. Þú kemst í bókahilluna þína hvar og hvenær sem er í tölvu eða snjalltæki. Einfalt og þægilegt!Rafbók til eignar
Rafbók til eignar þarf að hlaða niður á þau tæki sem þú vilt nota innan eins árs frá því bókin er keypt.
Þú kemst í bækurnar hvar sem er
Þú getur nálgast allar raf(skóla)bækurnar þínar á einu augabragði, hvar og hvenær sem er í bókahillunni þinni. Engin taska, enginn kyndill og ekkert vesen (hvað þá yfirvigt).
Auðvelt að fletta og leita
Þú getur flakkað milli síðna og kafla eins og þér hentar best og farið beint í ákveðna kafla úr efnisyfirlitinu. Í leitinni finnur þú orð, kafla eða síður í einum smelli.
Glósur og yfirstrikanir
Þú getur auðkennt textabrot með mismunandi litum og skrifað glósur að vild í rafbókina. Þú getur jafnvel séð glósur og yfirstrikanir hjá bekkjarsystkinum og kennara ef þeir leyfa það. Allt á einum stað.
Hvað viltu sjá? / Þú ræður hvernig síðan lítur út
Þú lagar síðuna að þínum þörfum. Stækkaðu eða minnkaðu myndir og texta með multi-level zoom til að sjá síðuna eins og þér hentar best í þínu námi.
Fleiri góðir kostir
- Þú getur prentað síður úr bókinni (innan þeirra marka sem útgefandinn setur)
- Möguleiki á tengingu við annað stafrænt og gagnvirkt efni, svo sem myndbönd eða spurningar úr efninu
- Auðvelt að afrita og líma efni/texta fyrir t.d. heimaverkefni eða ritgerðir
- Styður tækni sem hjálpar nemendum með sjón- eða heyrnarskerðingu
- Gerð : 208
- Höfundur : 5734
- Útgáfuár : 2017
- Leyfi : 380