Geophysical Data Analysis
Námskeið
- JEÐ113F Andhverfar varpanir í jarðeðlisfræði
Lýsing:
Geophysical Data Analysis: Diverse Inverse Theory, Fourth Edition is a revised and expanded introduction to inverse theory and tomography as it is practiced by geophysicists. It demonstrates the methods needed to analyze a broad spectrum of geophysical datasets, with special attention to those methods that generate images of the earth. Data analysis can be a mathematically complex activity, but the treatment in this volume is carefully designed to emphasize those mathematical techniques that readers will find the most familiar and to systematically introduce less-familiar ones.
Using problems and case studies, along with MATLAB computer code and summaries of methods, the book provides data scientists and engineers in geophysics with the tools necessary to understand and apply mathematical techniques and inverse theory. Includes material on probability, including Bayesian influence, probability density function and metropolis algorithm Offers detailed discussion of the application of inverse theory to tectonic, gravitational and geomagnetic studies Contains numerous examples, color figures and end-of-chapter homework problems to help readers explore and further understand presented ideas Includes MATLAB examples and problem sets Updated and refined throughout to bring the text in line with current understanding and improved examples and case studies Expanded sections to cover material, such as second-derivation smoothing and chi-squared tests not covered in the previous edition.
Annað
- Höfundur: William Menke
- Útgáfa:4
- Útgáfudagur: 2018-04-10
- Engar takmarkanir á útprentun
- Engar takmarkanir afritun
- Format:ePub
- ISBN 13: 9780128135563
- Print ISBN: 9780128135556
- ISBN 10: 0128135565
Efnisyfirlit
- Cover image
- Title page
- Table of Contents
- Copyright
- Preface
- Introduction
- I.1 Forward and Inverse Theories
- I.2 MATLAB as a Tool for Learning Inverse Theory
- I.3 A Very Quick MATLAB Tutorial
- I.4 Review of Vectors and Matrices and Their Representation in MATLAB
- I.5 Useful MatLab Operations
- Chapter 1: Describing Inverse Problems
- Abstract
- 1.1 Formulating Inverse Problems
- 1.2 The Linear Inverse Problem
- 1.3 Examples of Formulating Inverse Problems
- 1.4 Solutions to Inverse Problems
- 1.5 Problems
- Chapter 2: Some Comments on Probability Theory
- Abstract
- 2.1 Noise and Random Variables
- 2.2 Correlated Data
- 2.3 Functions of Random Variables
- 2.4 Gaussian Probability Density Functions
- 2.5 Testing the Assumption of Gaussian Statistics
- 2.6 Conditional Probability Density Functions
- 2.7 Confidence Intervals
- 2.8 Computing Realizations of Random Variables
- 2.9 Problems
- Chapter 3: Solution of the Linear, Gaussian Inverse Problem, Viewpoint 1: The Length Method
- Abstract
- 3.1 The Lengths of Estimates
- 3.2 Measures of Length
- 3.3 Least Squares for a Straight Line
- 3.4 The Least Squares Solution of the Linear Inverse Problem
- 3.5 Some Examples
- 3.6 The Existence of the Least Squares Solution
- 3.7 The Purely Underdetermined Problem
- 3.8 Mixed-Determined Problems
- 3.9 Weighted Measures of Length as a Type of Prior Information
- 3.10 Other Types of Prior Information
- 3.11 The Variance of the Model Parameter Estimates
- 3.12 Variance and Prediction Error of the Least Squares Solution
- 3.13 Problems
- Chapter 4: Solution of the Linear, Gaussian Inverse Problem, Viewpoint 2: Generalized Inverses
- Abstract
- 4.1 Solutions Versus Operators
- 4.2 The Data Resolution Matrix
- 4.3 The Model Resolution Matrix
- 4.4 The Unit Covariance Matrix
- 4.5 Resolution and Covariance of Some Generalized Inverses
- 4.6 Measures of Goodness of Resolution and Covariance
- 4.7 Generalized Inverses With Good Resolution and Covariance
- 4.8 Sidelobes and the Backus-Gilbert Spread Function
- 4.9 The Backus-Gilbert Generalized Inverse for the Underdetermined Problem
- 4.10 Including the Covariance Size
- 4.11 The Trade-Off of Resolution and Variance
- 4.12 Checkerboard Tests
- 4.13 Problems
- Chapter 5: Solution of the Linear, Gaussian Inverse Problem, Viewpoint 3: Maximum Likelihood Methods
- Abstract
- 5.1 The Mean of a Group of Measurements
- 5.2 Maximum Likelihood Applied to Inverse Problem
- 5.3 Model Resolution in the Presence of Prior Information
- 5.4 Relative Entropy as a Guiding Principle
- 5.5 Equivalence of the Three Viewpoints
- 5.6 Chi-Square Test for the Compatibility of the Prior and Posterior Error
- 5.7 The F-test of the Error Improvement Significance
- 5.8 Problems
- Chapter 6: Nonuniqueness and Localized Averages
- Abstract
- 6.1 Null Vectors and Nonuniqueness
- 6.2 Null Vectors of a Simple Inverse Problem
- 6.3 Localized Averages of Model Parameters
- 6.4 Relationship to the Resolution Matrix
- 6.5 Averages Versus Estimates
- 6.6 Nonunique Averaging Vectors and Prior Information
- 6.7 End-Member Solutions and Squeezing
- 6.8 Problems
- Chapter 7: Applications of Vector Spaces
- Abstract
- 7.1 Model and Data Spaces
- 7.2 Householder Transformations
- 7.3 Designing Householder Transformations
- 7.4 Transformations That Do Not Preserve Length
- 7.5 The Solution of the Mixed-Determined Problem
- 7.6 Singular-Value Decomposition and the Natural Generalized Inverse
- 7.7 Derivation of the Singular-Value Decomposition
- 7.8 Simplifying Linear Equality and Inequality Constraints
- 7.9 Inequality Constraints
- 7.10 Problems
- Chapter 8: Linear Inverse Problems and Non-Gaussian Statistics
- Abstract
- 8.1 L1 Norms and Exponential Probability Density Functions
- 8.2 Maximum Likelihood Estimate of the Mean of an Exponential Probability Density Function
- 8.3 The General Linear Problem
- 8.4 Solving L1 Norm Problems by Transformation to a Linear Programming Problem
- 8.5 Solving L1 Norm Problems by Reweighted L2 Minimization
- 8.6 The L∞ Norm
- 8.7 The L0 Norm and Sparsity
- 8.8 Problems
- Chapter 9: Nonlinear Inverse Problems
- Abstract
- 9.1 Parameterizations
- 9.2 Linearizing Transformations
- 9.3 Error and Likelihood in Nonlinear Inverse Problems
- 9.4 The Grid Search
- 9.5 The Monte Carlo Search
- 9.6 Newton's Method
- 9.7 The Implicit Nonlinear Inverse Problem With Gaussian Data
- 9.8 Gradient Method
- 9.9 Simulated Annealing
- 9.10 The Genetic Algorithm
- 9.11 Choosing the Null Distribution for Inexact Non-Gaussian Nonlinear Theories
- 9.12 Bootstrap Confidence Intervals
- 9.13 Problems
- Chapter 10: Factor Analysis
- Abstract
- 10.1 The Factor Analysis Problem
- 10.2 Normalization and Physicality Constraints
- 10.3 Q-Mode and R-Mode Factor Analysis
- 10.4 Empirical Orthogonal Function Analysis
- 10.5 Problems
- Chapter 11: Continuous Inverse Theory and Tomography
- Abstract
- 11.1 The Backus-Gilbert Inverse Problem
- 11.2 Resolution and Variance Trade-Off
- 11.3 Approximating Continuous Inverse Problems as Discrete Problems
- 11.4 Tomography and Continuous Inverse Theory
- 11.5 Tomography and the Radon Transform
- 11.6 The Fourier Slice Theorem
- 11.7 Correspondence Between Matrices and Linear Operators
- 11.8 The Fréchet Derivative
- 11.9 The Fréchet Derivative of Error
- 11.10 Backprojection
- 11.11 Fréchet Derivatives Involving a Differential Equation
- 11.12 Derivative With Respect to a Parameter in a Differential Equation
- 11.13 Problems
- Chapter 12: Sample Inverse Problems
- Abstract
- 12.1 An Image Enhancement Problem
- 12.2 Digital Filter Design
- 12.3 Adjustment of Crossover Errors
- 12.4 An Acoustic Tomography Problem
- 12.5 One-Dimensional Temperature Distribution
- 12.6 L1, L2, and L∞ Fitting of a Straight Line
- 12.7 Finding the Mean of a Set of Unit Vectors
- 12.8 Gaussian and Lorentzian Curve Fitting
- 12.9 Earthquake Location
- 12.10 Vibrational Problems
- 12.11 Problems
- Chapter 13: Applications of Inverse Theory to Solid Earth Geophysics
- Abstract
- 13.1 Earthquake Location and Determination of the Velocity Structure of the Earth From Travel Time Data
- 13.2 Moment Tensors of Earthquakes
- 13.3 Adjoint Methods in Seismic Imaging
- 13.4 Wavefield Tomography
- 13.5 Finite-Frequency Travel Time Tomography
- 13.6 Banana-Doughnut Kernels
- 13.7 Seismic Migration
- 13.8 Velocity Structure From Free Oscillations and Seismic Surface Waves
- 13.9 Seismic Attenuation
- 13.10 Signal Correlation
- 13.11 Tectonic Plate Motions
- 13.12 Gravity and Geomagnetism
- 13.13 Electromagnetic Induction and the Magnetotelluric Method
- 13.14 Problems
- Chapter 14: Appendices
- 14.1 Implementing Constraints With Lagrange multipliers
- 14.2 L2 Inverse Theory With Complex Quantities
- 14.3 Method Summaries
- Index
UM RAFBÆKUR Á HEIMKAUP.IS
Bókahillan þín er þitt svæði og þar eru bækurnar þínar geymdar. Þú kemst í bókahilluna þína hvar og hvenær sem er í tölvu eða snjalltæki. Einfalt og þægilegt!Rafbók til eignar
Rafbók til eignar þarf að hlaða niður á þau tæki sem þú vilt nota innan eins árs frá því bókin er keypt.
Þú kemst í bækurnar hvar sem er
Þú getur nálgast allar raf(skóla)bækurnar þínar á einu augabragði, hvar og hvenær sem er í bókahillunni þinni. Engin taska, enginn kyndill og ekkert vesen (hvað þá yfirvigt).
Auðvelt að fletta og leita
Þú getur flakkað milli síðna og kafla eins og þér hentar best og farið beint í ákveðna kafla úr efnisyfirlitinu. Í leitinni finnur þú orð, kafla eða síður í einum smelli.
Glósur og yfirstrikanir
Þú getur auðkennt textabrot með mismunandi litum og skrifað glósur að vild í rafbókina. Þú getur jafnvel séð glósur og yfirstrikanir hjá bekkjarsystkinum og kennara ef þeir leyfa það. Allt á einum stað.
Hvað viltu sjá? / Þú ræður hvernig síðan lítur út
Þú lagar síðuna að þínum þörfum. Stækkaðu eða minnkaðu myndir og texta með multi-level zoom til að sjá síðuna eins og þér hentar best í þínu námi.
Fleiri góðir kostir
- Þú getur prentað síður úr bókinni (innan þeirra marka sem útgefandinn setur)
- Möguleiki á tengingu við annað stafrænt og gagnvirkt efni, svo sem myndbönd eða spurningar úr efninu
- Auðvelt að afrita og líma efni/texta fyrir t.d. heimaverkefni eða ritgerðir
- Styður tækni sem hjálpar nemendum með sjón- eða heyrnarskerðingu
- Gerð : 208
- Höfundur : 10278
- Útgáfuár : 2018
- Leyfi : 380