Data Smart: Using Data Science to Transform Information into Insight
4.290 kr.

Lýsing:
The book provides nine tutorials on optimization, machine learning, data mining, and forecasting all within the confines of a spreadsheet. Each tutorial uses a real-world problem and the author guides the reader using querys the reader might ask as how to craft a solution using the correct data science technique. Hosting these nine spreadsheets for download will be necessary so that the reader can work the problems along with the book.
Annað
- Höfundur: John W. Foreman
- Útgáfa:1
- Útgáfudagur: 2013-10-31
- Hægt að prenta út 2 bls.
- Hægt að afrita 10 bls.
- Format:Page Fidelity
- ISBN 13: 9781118661482
- Print ISBN: 9781118661468
- ISBN 10: 1118661486
Efnisyfirlit
- Title Page
- Copyright
- Contents
- Chapter 1 Everything You Ever Needed to Know about Spreadsheets but Were Too Afraid to Ask
- Some Sample Data
- Moving Quickly with the Control Button
- Copying Formulas and Data Quickly
- Formatting Cells
- Paste Special Values
- Inserting Charts
- Locating the Find and Replace Menus
- Formulas for Locating and Pulling Values
- Using VLOOKUP to Merge Data
- Filtering and Sorting
- Using PivotTables
- Using Array Formulas
- Solving Stuff with Solver
- OpenSolver: I Wish We Didn’t Need This, but We Do
- Wrapping Up
- Chapter 2 Cluster Analysis Part I: Using K-Means to Segment Your Customer Base
- Girls Dance with Girls, Boys Scratch Their Elbows
- Getting Real: K-Means Clustering Subscribers in E-mail Marketing
- Joey Bag O’ Donuts Wholesale Wine Emporium
- The Initial Dataset
- Determining What to Measure
- Start with Four Clusters
- Euclidean Distance: Measuring Distances as the Crow Flies
- Distances and Cluster Assignments for Everybody!
- Solving for the Cluster Centers
- Making Sense of the Results
- Getting the Top Deals by Cluster
- The Silhouette: A Good Way to Let Different K Values Duke It Out
- How about Five Clusters?
- Solving for Five Clusters
- Getting the Top Deals for All Five Clusters
- Computing the Silhouette for 5-Means Clustering
- K-Medians Clustering and Asymmetric Distance Measurements
- Using K-Medians Clustering
- Getting a More Appropriate Distance Metric
- Putting It All in Excel
- The Top Deals for the 5-Medians Clusters
- Wrapping Up
- Chapter 3 Naïve Bayes and the Incredible Lightness of Being an Idiot
- When You Name a Product Mandrill, You’re Going to Get Some Signal and Some Noise
- The World’s Fastest Intro to Probability Theory
- Totaling Conditional Probabilities
- Joint Probability, the Chain Rule, and Independence
- What Happens in a Dependent Situation?
- Bayes Rule
- Using Bayes Rule to Create an AI Model
- High-Level Class Probabilities Are Often Assumed to Be Equal
- A Couple More Odds and Ends
- Let’s Get This Excel Party Started
- Removing Extraneous Punctuation
- Splitting on Spaces
- Counting Tokens and Calculating Probabilities
- And We Have a Model! Let’s Use It
- Wrapping Up
- Chapter 4 Optimization Modeling: Because That “Fresh Squeezed” Orange Juice Ain’t Gonna Blend
- Why Should Data Scientists Know Optimization?
- Starting with a Simple Trade-Off
- Representing the Problem as a Polytope
- Solving by Sliding the Level Set
- The Simplex Method: Rooting around the Corners
- Working in Excel
- There’s a Monster at the End of This Chapter
- Fresh from the Grove to Your Glass...with a Pit Stop Through a Blending Model
- You Use a Blending Model
- Let’s Start with Some Specs
- Coming Back to Consistency
- Putting the Data into Excel
- Setting Up the Problem in Solver
- Lowering Your Standards
- Dead Squirrel Removal: The Minimax Formulation
- If-Then and the “Big M” Constraint
- Multiplying Variables: Cranking Up the Volume to 11
- Modeling Risk
- Normally Distributed Data
- Wrapping Up
- Chapter 5 Cluster Analysis Part II: Network Graphs and Community Detection
- What Is a Network Graph?
- Visualizing a Simple Graph
- Brief Introduction to Gephi
- Gephi Installation and File Preparation
- Laying Out the Graph
- Node Degree
- Pretty Printing
- Touching the Graph Data
- Building a Graph from the Wholesale Wine Data
- Creating a Cosine Similarity Matrix
- Producing an r-Neighborhood Graph
- How Much Is an Edge Worth? Points and Penalties in Graph Modularity
- What’s a Point and What’s a Penalty?
- Setting Up the Score Sheet
- Let’s Get Clustering!
- Split Number 1
- Split 2: Electric Boogaloo
- And…Split 3: Split with a Vengeance
- Encoding and Analyzing the Communities
- There and Back Again: A Gephi Tale
- Wrapping Up
- Chapter 6 The Granddaddy of Supervised Artificial Intelligence—Regression
- Wait, What? You’re Pregnant?
- Don’t Kid Yourself
- Predicting Pregnant Customers at RetailMart Using Linear Regression
- The Feature Set
- Assembling the Training Data
- Creating Dummy Variables
- Let’s Bake Our Own Linear Regression
- Linear Regression Statistics: R-Squared, F Tests, t Tests
- Making Predictions on Some New Data and Measuring Performance
- Predicting Pregnant Customers at RetailMart Using Logistic Regression
- First You Need a Link Function
- Hooking Up the Logistic Function and Reoptimizing
- Baking an Actual Logistic Regression
- Model Selection—Comparing the Performance of the Linear and Logistic Regressions
- For More Information
- Wrapping Up
- Chapter 7 Ensemble Models: A Whole Lot of Bad Pizza
- Using the Data from Chapter 6
- Bagging: Randomize, Train, Repeat
- Decision Stump Is an Unsexy Term for a Stupid Predictor
- Doesn’t Seem So Stupid to Me!
- You Need More Power!
- Let’s Train It
- Evaluating the Bagged Model
- Boosting: If You Get It Wrong, Just Boost and Try Again
- Training the Model—Every Feature Gets a Shot
- Evaluating the Boosted Model
- Wrapping Up
- Chapter 8 Forecasting: Breathe Easy; You Can’t Win
- The Sword Trade Is Hopping
- Getting Acquainted with Time Series Data
- Starting Slow with Simple Exponential Smoothing
- Setting Up the Simple Exponential Smoothing Forecast
- You Might Have a Trend
- Holt’s Trend-Corrected Exponential Smoothing
- Setting Up Holt’s Trend-Corrected Smoothing in a Spreadsheet
- So Are You Done? Looking at Autocorrelations
- Holt’s Trend-Corrected Exponential Smoothing
- Multiplicative Holt-Winters Exponential Smoothing
- Setting the Initial Values for Level, Trend, and Seasonality
- Getting Rolling on the Forecast
- And...Optimize!
- Please Tell Me We’re Done Now!!!
- Putting a Prediction Interval around the Forecast
- Creating a Fan Chart for Effect
- Wrapping Up
- Outliers Are (Bad?) People, Too
- The Fascinating Case of Hadlum v. Hadlum
- Tukey Fences
- Applying Tukey Fences in a Spreadsheet
- The Limitations of This Simple Approach
- Terrible at Nothing, Bad at Everything
- Preparing Data for Graphing
- Creating a Graph
- Getting the k Nearest Neighbors
- Graph Outlier Detection Method 1: Just Use the Indegree
- Graph Outlier Detection Method 2: Getting Nuanced with k-Distance
- Graph Outlier Detection Method 3: Local Outlier Factors Are Where It’s At
- Wrapping Up
- Getting Up and Running with R
- Some Simple Hand-Jamming
- Reading Data into R
- Doing Some Actual Data Science
- Spherical K-Means on Wine Data in Just a Few Lines
- Building AI Models on the Pregnancy Data
- Forecasting in R
- Looking at Outlier Detection
- Wrapping Up
- Where Am I? What Just Happened?
- Before You Go-Go
- Get to Know the Problem
- We Need More Translators
- Beware the Three-Headed Geek-Monster: Tools, Performance, and Mathematical Perfection
- You Are Not the Most Important Function of Your Organization
- Get Creative and Keep in Touch!
UM RAFBÆKUR Á HEIMKAUP.IS
Bókahillan þín er þitt svæði og þar eru bækurnar þínar geymdar. Þú kemst í bókahilluna þína hvar og hvenær sem er í tölvu eða snjalltæki. Einfalt og þægilegt!Rafbók til eignar
Rafbók til eignar þarf að hlaða niður á þau tæki sem þú vilt nota innan eins árs frá því bókin er keypt.
Þú kemst í bækurnar hvar sem er
Þú getur nálgast allar raf(skóla)bækurnar þínar á einu augabragði, hvar og hvenær sem er í bókahillunni þinni. Engin taska, enginn kyndill og ekkert vesen (hvað þá yfirvigt).
Auðvelt að fletta og leita
Þú getur flakkað milli síðna og kafla eins og þér hentar best og farið beint í ákveðna kafla úr efnisyfirlitinu. Í leitinni finnur þú orð, kafla eða síður í einum smelli.
Glósur og yfirstrikanir
Þú getur auðkennt textabrot með mismunandi litum og skrifað glósur að vild í rafbókina. Þú getur jafnvel séð glósur og yfirstrikanir hjá bekkjarsystkinum og kennara ef þeir leyfa það. Allt á einum stað.
Hvað viltu sjá? / Þú ræður hvernig síðan lítur út
Þú lagar síðuna að þínum þörfum. Stækkaðu eða minnkaðu myndir og texta með multi-level zoom til að sjá síðuna eins og þér hentar best í þínu námi.
Fleiri góðir kostir
- Þú getur prentað síður úr bókinni (innan þeirra marka sem útgefandinn setur)
- Möguleiki á tengingu við annað stafrænt og gagnvirkt efni, svo sem myndbönd eða spurningar úr efninu
- Auðvelt að afrita og líma efni/texta fyrir t.d. heimaverkefni eða ritgerðir
- Styður tækni sem hjálpar nemendum með sjón- eða heyrnarskerðingu
- Gerð : 208
- Höfundur : 11512
- Útgáfuár : 2013
- Leyfi : 379