Concepts in Thermal Physics
Námskeið
- EFN307G Varmafræði og inngangur að safneðlisfræði
- EFN315G Varmafræði og inngangur að safneðlisfræði.
Ensk lýsing:
An understanding of thermal physics is crucial to much of modern physics, chemistry and engineering. This book provides a modern introduction to the main principles that are foundational to thermal physics, thermodynamics and statistical mechanics. The key concepts are carefully presented in a clear way, and new ideas are illustrated with copious worked examples as well as a description of the historical background to their discovery.
Applications are presented to subjects as diverse as stellar astrophysics, information and communication theory, condensed matter physics and climate change. Each chapter concludes with detailed exercises. The second edition of this popular textbook maintains the structure and lively style of the first edition but extends its coverage of thermodynamics and statistical mechanics to include several new topics, including osmosis, diffusion problems, Bayes theorem, radiative transfer, the Ising model and Monte Carlo methods.
Lýsing:
An understanding of thermal physics is crucial to much of modern physics, chemistry and engineering. This book provides a modern introduction to the main principles that are foundational to thermal physics, thermodynamics and statistical mechanics. The key concepts are carefully presented in a clear way, and new ideas are illustrated with copious worked examples as well as a description of the historical background to their discovery.
Applications are presented to subjects as diverse as stellar astrophysics, information and communication theory, condensed matter physics and climate change. Each chapter concludes with detailed exercises. The second edition of this popular textbook maintains the structure and lively style of the first edition but extends its coverage of thermodynamics and statistical mechanics to include several new topics, including osmosis, diffusion problems, Bayes theorem, radiative transfer, the Ising model and Monte Carlo methods.
Annað
- Höfundar: Stephen J. Blundell, Katherine M. Blundell
- Útgáfa:2
- Útgáfudagur: 2009-10-02
- Engar takmarkanir á útprentun
- Engar takmarkanir afritun
- Format:Page Fidelity
- ISBN 13: 9780191574337
- Print ISBN: 9780199562091
- ISBN 10: 0191574333
Efnisyfirlit
- Concepts in Thermal Physics
- Copyright
- Preface
- Contents
- Part I Preliminaries
- 1 Introduction
- 1.1 What is a mole?
- 1.2 The thermodynamic limit
- 1.3 The ideal gas
- 1.4 Combinatorial problems
- 1.5 Plan of the book
- Exercises
- 2 Heat
- 2.1 A definition of heat
- 2.2 Heat capacity
- Exercises
- 3 Probability
- 3.1 Discrete probability distributions
- 3.2 Continuous probability distributions
- 3.3 Linear transformation
- 3.4 Variance
- 3.5 Linear transformation and the variance
- 3.6 Independent variables
- 3.7 Binomial distribution
- Further reading
- Exercises
- 4 Temperature and the Boltzmann factor
- 4.1 Thermal equilibrium
- 4.2 Thermometers
- 4.3 The microstates and macrostates
- 4.4 A statistical definition of temperature
- 4.5 Ensembles
- 4.6 Canonical ensemble
- 4.7 Applications of the Boltzmann distribution
- Further reading
- Exercises
- 1 Introduction
- 5 The Maxwell–Boltzmann distribution
- 5.1 The velocity distribution
- 5.2 The speed distribution
- 5.3 Experimental justification
- Exercises
- 6 Pressure
- 6.1 Molecular distributions
- 6.2 The ideal gas law
- 6.3 Dalton’s law
- Exercises
- 7 Molecular effusion
- 7.1 Flux
- 7.2 Effusion
- Exercises
- 8 The mean free path and collisions
- 8.1 The mean collision time
- 8.2 The collision cross-section
- 8.3 The mean free path
- Exercises
- 9 Transport properties in gases
- 9.1 Viscosity
- 9.2 Thermal conductivity
- 9.3 Diffusion
- 9.4 More detailed theory
- Further reading
- Exercises
- 10 The thermal diffusion equation
- 10.1 Derivation of the thermal diffusion equation
- 10.2 The one-dimensional thermal diffusion equation
- 10.3 The steady state
- 10.4 The thermal diffusion equation for a sphere
- 10.5 Newton’s law of cooling
- 10.6 The Prandtl number
- 10.7 Sources of heat
- 10.8 Particle diffusion
- Exercises
- 11 Energy
- 11.1 Some definitions
- 11.2 The first law of thermodynamics
- 11.3 Heat capacity
- Exercises
- 12 Isothermal and adiabatic processes
- 12.1 Reversibility
- 12.2 Isothermal expansion of an ideal gas
- 12.3 Adiabatic expansion of an ideal gas
- 12.4 Adiabatic atmosphere
- Exercises
- 13 Heat engines and the second law
- 13.1 The second law of thermodynamics
- 13.2 The Carnot engine
- 13.3 Carnot’s theorem
- 13.4 Equivalence of Clausius’ and Kelvin’s statements
- 13.5 Examples of heat engines
- 13.6 Heat engines running backwards
- 13.7 Clausius’ theorem
- Further reading
- Exercises
- 14 Entropy
- 14.1 Definition of entropy
- 14.2 Irreversible change
- 14.3 The first law revisited
- 14.4 The Joule expansion
- 14.5 The statistical basis for entropy
- 14.6 The entropy of mixing
- 14.7 Maxwell’s demon
- 14.8 Entropy and probabilit
- Exercises
- 15 Information theory
- 15.1 Information and Shannon entropy
- 15.2 Information and thermodynamics
- 15.3 Data compression
- 15.4 Quantum informati
- 15.5 Conditional and joint probabiliti
- 15.6 Bayes’ theorem
- Further reading
- Exercises
- 16 Thermodynamic potentials
- 16.1 Internal energy, U
- 16.2 Enthalpy, H
- 16.3 Helmholtz function, F
- 16.4 Gibbs function, G
- 16.5 Constraints
- 16.6 Maxwell’s relations
- Exercises
- 17 Rods, bubbles, and magnets
- 17.1 Elastic rod
- 17.2 Surface tension
- 17.3 Electric and magnetic dipoles
- 17.4 Paramagnetism
- Exercises
- 18 The third law
- 18.1 Different statements of the third law
- 18.2 Consequences of the third law
- Exercises
- 19 Equipartition of energy
- 19.1 Equipartition theorem
- 19.2 Applications
- 19.3 Assumptions made
- 19.4 Brownian motion
- Exercises
- 20 The partition function
- 20.1 Writing down the partition function
- 20.2 Obtaining the functions of state
- 20.3 The big idea
- 20.4 Combining partition functions
- Exercises
- 21 Statistical mechanics of an ideal gas
- 21.1 Density of states
- 21.2 Quantum concentration
- 21.3 Distinguishability
- 21.4 Functions of state of the ideal gas
- 21.5 Gibbs paradox
- 21.6 Heat capacity of a diatomic g
- Exercises
- 22 The chemical potential
- 22.1 A definition of the chemical potential
- 22.2 The meaning of the chemical potential
- 22.3 Grand partition function
- 22.4 Grand potential
- 22.5 Chemical potential as Gibbs function per particle
- 22.6 Many types of particle
- 22.7 Particle number conservation laws
- 22.8 Chemical potential and chemical reactions
- 22.9 Osmosis
- Further reading
- Exercises
- 23 Photons
- 23.1 The classical thermodynamics of electromagnetic radiation
- 23.2 Spectral energy density
- 23.3 Kirchhoff’s law
- 23.4 Radiation pressure
- 23.5 The statistical mechanics of the photon gas
- 23.6 Black-body distribution
- 23.7 Cosmic microwave background radiation
- 23.8 The Einstein A and B coefficients
- Further reading
- Exercises
- 24 Phonons
- 24.1 The Einstein model
- 24.2 The Debye model
- 24.3 Phonon dispersion
- Further reading
- Exercises
- 25 Relativistic gase
- 25.1 Relativistic dispersion relation for massive particles
- 25.2 The ultrarelativistic gas
- 25.3 Adiabatic expansion of an ultrarelativistic gas
- Exercises
- 26 Real gases
- 26.1 The van der Waals gas
- 26.2 The Dieterici equation
- 26.3 Virial expansion
- 26.4 The law of corresponding states
- Exercises
- 27 Cooling real gases
- 27.1 The Joule expansion
- 27.2 Isothermal expansion
- 27.3 Joule–Kelvin expansion
- 27.4 Liquefaction of gases
- Exercises
- 28 Phase transitions
- 28.1 Latent heat
- 28.2 Chemical potential and phase changes
- 28.3 The Clausius–Clapeyron equation
- 28.4 Stability and metastability
- 28.5 The Gibbs phase rule
- 28.6 Colligative properties
- 28.7 Classification of phase transitions
- 28.8 The Ising model
- Further reading
- Exercises
- 29 Bose–Einstein and Fermi–Dirac distributions
- 29.1 Exchange and symmetry
- 29.2 Wave functions of identical particles
- 29.3 The statistics of identical particles
- Further reading
- Exercises
- 30 Quantum gases and condensates
- 30.1 The non-interacting quantum fluid
- 30.2 The Fermi gas
- 30.3 The Bose gas
- 30.4 Bose–Einstein condensation (BEC)
- Further reading
- Exercises
- 31 Sound waves
- 31.1 Sound waves under isothermal conditions
- 31.2 Sound waves under adiabatic conditions
- 31.3 Are sound waves in general adiabatic or isothermal?
- 31.4 Derivation of the speed of sound within fluids
- Further reading
- Exercises
- 32 Shock waves
- 32.1 The Mach number
- 32.2 Structure of shock waves
- 32.3 Shock conservation laws
- 32.4 The Rankine–Hugoniot conditions
- Further reading
- Exercises
- 33 Brownian motion and fluctuations
- 33.1 Brownian motion
- 33.2 Johnson noise
- 33.3 Fluctuations
- 33.4 Fluctuations and the availability
- 33.5 Linear response
- 33.6 Correlation functions
- Further reading
- Exercises
- 34 Non-equilibrium thermodynamics
- 34.1 Entropy production
- 34.2 The kinetic coefficients
- 34.3 Proof of the Onsager reciprocal relations
- 34.4 Thermoelectricity
- 34.5 Time reversal and the arrow of time
- Further reading
- Exercises
- 35 Stars
- 35.1 Gravitational interaction
- 35.2 Nuclear reactions
- 35.3 Heat transfer
- Further reading
- Exercises
- 36 Compact objects
- 36.1 Electron degeneracy pressure
- 36.2 White dwarfs
- 36.3 Neutron stars
- 36.4 Black holes
- 36.5 Accretion
- 36.6 Black holes and entropy
- 36.7 Life, the Universe, and entropy
- Further reading
- Exercises
- 37 Earth’s atmosphere
- 37.1 Solar energy
- 37.2 The temperature profile in the atmosphere
- 37.3 Radiative transfer
- 37.4 The greenhouse effect
- 37.5 Global warming
- Further reading
- Exercises
- C.1 The factorial integral
- C.2 The Gaussian integral
- C.3 Stirling’s formula
- C.4 Riemann zeta function
- C.5 The polylogarithm
- C.6 Partial derivatives
- C.7 Exact differentials
- C.8 Volume of a hypersphere
- C.9 Jacobians
- C.10 The Dirac delta function
- C.11 Fourier transforms
- C.12 Solution of the diffusion equation
- C.13 Lagrange multipliers
UM RAFBÆKUR Á HEIMKAUP.IS
Bókahillan þín er þitt svæði og þar eru bækurnar þínar geymdar. Þú kemst í bókahilluna þína hvar og hvenær sem er í tölvu eða snjalltæki. Einfalt og þægilegt!Rafbók til eignar
Rafbók til eignar þarf að hlaða niður á þau tæki sem þú vilt nota innan eins árs frá því bókin er keypt.
Þú kemst í bækurnar hvar sem er
Þú getur nálgast allar raf(skóla)bækurnar þínar á einu augabragði, hvar og hvenær sem er í bókahillunni þinni. Engin taska, enginn kyndill og ekkert vesen (hvað þá yfirvigt).
Auðvelt að fletta og leita
Þú getur flakkað milli síðna og kafla eins og þér hentar best og farið beint í ákveðna kafla úr efnisyfirlitinu. Í leitinni finnur þú orð, kafla eða síður í einum smelli.
Glósur og yfirstrikanir
Þú getur auðkennt textabrot með mismunandi litum og skrifað glósur að vild í rafbókina. Þú getur jafnvel séð glósur og yfirstrikanir hjá bekkjarsystkinum og kennara ef þeir leyfa það. Allt á einum stað.
Hvað viltu sjá? / Þú ræður hvernig síðan lítur út
Þú lagar síðuna að þínum þörfum. Stækkaðu eða minnkaðu myndir og texta með multi-level zoom til að sjá síðuna eins og þér hentar best í þínu námi.
Fleiri góðir kostir
- Þú getur prentað síður úr bókinni (innan þeirra marka sem útgefandinn setur)
- Möguleiki á tengingu við annað stafrænt og gagnvirkt efni, svo sem myndbönd eða spurningar úr efninu
- Auðvelt að afrita og líma efni/texta fyrir t.d. heimaverkefni eða ritgerðir
- Styður tækni sem hjálpar nemendum með sjón- eða heyrnarskerðingu
- Gerð : 208
- Höfundur : 6400
- Útgáfuár : 2009
- Leyfi : 380