Analysis of Financial Time Series
14.490 kr.
Námskeið
- HAG606G Hagrannsóknir III
Annað
- Höfundur: Ruey S. Tsay
- Útgáfa:3
- Útgáfudagur: 2010-09-13
- Blaðsíður: 677
- Hægt að prenta út 10 bls.
- Hægt að afrita 2 bls.
- Format:Page Fidelity
- ISBN 13: 9781118305751
- Print ISBN: 9780470414354
- ISBN 10: 1118305752
Efnisyfirlit
- Analysis of Financial Time Series
- Contents
- Preface
- Preface to the Second Edition
- Preface to the First Edition
- 1 Financial Time Series and Their Characteristics
- 1.1 Asset Returns
- 1.2 Distributional Properties of Returns
- 1.2.1 Review of Statistical Distributions and Their Moments
- 1.2.2 Distributions of Returns
- 1.2.3 Multivariate Returns
- 1.2.4 Likelihood Function of Returns
- 1.2.5 Empirical Properties of Returns
- 1.3 Processes Considered
- Appendix: R Packages
- Exercises
- References
- 2 Linear Time Series Analysis and Its Applications
- 2.1 Stationarity
- 2.2 Correlation and Autocorrelation Function
- 2.3 White Noise and Linear Time Series
- 2.4 Simple AR Models
- 2.4.1 Properties of AR Models
- 2.4.2 Identifying AR Models in Practice
- 2.4.3 Goodness of Fit
- 2.4.4 Forecasting
- 2.5 Simple MA Models
- 2.5.1 Properties of MA Models
- 2.5.2 Identifying MA Order
- 2.5.3 Estimation
- 2.5.4 Forecasting Using MA Models
- 2.6 Simple ARMA Models
- 2.6.1 Properties of ARMA(1,1) Models
- 2.6.2 General ARMA Models
- 2.6.3 Identifying ARMA Models
- 2.6.4 Forecasting Using an ARMA Model
- 2.6.5 Three Model Representations for an ARMA Model
- 2.7 Unit-Root Nonstationarity
- 2.7.1 Random Walk
- 2.7.2 Random Walk with Drift
- 2.7.3 Trend-Stationary Time Series
- 2.7.4 General Unit-Root Nonstationary Models
- 2.7.5 Unit-Root Test
- 2.8 Seasonal Models
- 2.8.1 Seasonal Differencing
- 2.8.2 Multiplicative Seasonal Models
- 2.9 Regression Models with Time Series Errors
- 2.10 Consistent Covariance Matrix Estimation
- 2.11 Long-Memory Models
- Appendix: Some SCA Commands
- Exercises
- References
- 3 Conditional Heteroscedastic Models
- 3.1 Characteristics of Volatility
- 3.2 Structure of a Model
- 3.3 Model Building
- 3.3.1 Testing for ARCH Effect
- 3.4 The ARCH Model
- 3.4.1 Properties of ARCH Models
- 3.4.2 Weaknesses of ARCH Models
- 3.4.3 Building an ARCH Model
- 3.4.4 Some Examples
- 3.5 The GARCH Model
- 3.5.1 An Illustrative Example
- 3.5.2 Forecasting Evaluation
- 3.5.3 A Two-Pass Estimation Method
- 3.6 The Integrated GARCH Model
- 3.7 The GARCH-M Model
- 3.8 The Exponential GARCH Model
- 3.8.1 Alternative Model Form
- 3.8.2 Illustrative Example
- 3.8.3 Second Example
- 3.8.4 Forecasting Using an EGARCH Model
- 3.9 The Threshold GARCH Model
- 3.10 The CHARMA Model
- 3.10.1 Effects of Explanatory Variables
- 3.11 Random Coefficient Autoregressive Models
- 3.12 Stochastic Volatility Model
- 3.13 Long-Memory Stochastic Volatility Model
- 3.14 Application
- 3.15 Alternative Approaches
- 3.15.1 Use of High-Frequency Data
- 3.15.2 Use of Daily Open, High, Low, and Close Prices
- 3.16 Kurtosis of GARCH Models
- Appendix: Some RATS Programs for Estimating Volatility Models
- Exercises
- References
- 4 Nonlinear Models and Their Applications
- 4.1 Nonlinear Models
- 4.1.1 Bilinear Model
- 4.1.2 Threshold Autoregressive (TAR) Model
- 4.1.3 Smooth Transition AR (STAR) Model
- 4.1.4 Markov Switching Model
- 4.1.5 Nonparametric Methods
- 4.1.6 Functional Coefficient AR Model
- 4.1.7 Nonlinear Additive AR Model
- 4.1.8 Nonlinear State-Space Model
- 4.1.9 Neural Networks
- 4.2 Nonlinearity Tests
- 4.2.1 Nonparametric Tests
- 4.2.2 Parametric Tests
- 4.2.3 Applications
- 4.3 Modeling
- 4.4 Forecasting
- 4.4.1 Parametric Bootstrap
- 4.4.2 Forecasting Evaluation
- 4.5 Application
- Appendix A: Some RATS Programs for Nonlinear Volatility Models
- Appendix B: R and S-Plus Commands for Neural Network
- Exercises
- References
- 4.1 Nonlinear Models
- 5 High-Frequency Data Analysis and Market Microstructure
- 5.1 Nonsynchronous Trading
- 5.2 Bid–Ask Spread
- 5.3 Empirical Characteristics of Transactions Data
- 5.4 Models for Price Changes
- 5.4.1 Ordered Probit Model
- 5.4.2 Decomposition Model
- 5.5 Duration Models
- 5.5.1 The ACD Model
- 5.5.2 Simulation
- 5.5.3 Estimation
- 5.6 Nonlinear Duration Models
- 5.7 Bivariate Models for Price Change and Duration
- 5.8 Application
- Appendix A: Review of Some Probability Distributions
- Appendix B: Hazard Function
- Appendix C: Some RATS Programs for Duration Models
- Exercises
- References
- 6 Continuous-Time Models and Their Applications
- 6.1 Options
- 6.2 Some Continuous-Time Stochastic Processes
- 6.2.1 Wiener Process
- 6.2.2 Generalized Wiener Process
- 6.2.3 Ito Process
- 6.3 Ito’s Lemma
- 6.3.1 Review of Differentiation
- 6.3.2 Stochastic Differentiation
- 6.3.3 An Application
- 6.3.4 Estimation of µ and ó
- 6.4 Distributions of Stock Prices and Log Returns
- 6.5 Derivation of Black–Scholes Differential Equation
- 6.6 Black–Scholes Pricing Formulas
- 6.6.1 Risk-Neutral World
- 6.6.2 Formulas
- 6.6.3 Lower Bounds of European Options
- 6.6.4 Discussion
- 6.7 Extension of Ito’s Lemma
- 6.8 Stochastic Integral
- 6.9 Jump Diffusion Models
- 6.9.1 Option Pricing under Jump Diffusion
- 6.10 Estimation of Continuous-Time Models
- Appendix A: Integration of Black–Scholes Formula
- Appendix B: Approximation to Standard Normal Probability
- Exercises
- References
- 7 Extreme Values, Quantiles, and Value at Risk
- 7.1 Value at Risk
- 7.2 RiskMetrics
- 7.2.1 Discussion
- 7.2.2 Multiple Positions
- 7.2.3 Expected Shortfall
- 7.3 Econometric Approach to VaR Calculation
- 7.3.1 Multiple Periods
- 7.3.2 Expected Shortfall under Conditional Normality
- 7.4 Quantile Estimation
- 7.4.1 Quantile and Order Statistics
- 7.4.2 Quantile Regression
- 7.5 Extreme Value Theory
- 7.5.1 Review of Extreme Value Theory
- 7.5.2 Empirical Estimation
- 7.5.3 Application to Stock Returns
- 7.6 Extreme Value Approach to VaR
- 7.6.1 Discussion
- 7.6.2 Multiperiod VaR
- 7.6.3 Return Level
- 7.7 New Approach Based on the Extreme Value Theory
- 7.7.1 Statistical Theory
- 7.7.2 Mean Excess Function
- 7.7.3 New Approach to Modeling Extreme Values
- 7.7.4 VaR Calculation Based on the New Approach
- 7.7.5 Alternative Parameterization
- 7.7.6 Use of Explanatory Variables
- 7.7.7 Model Checking
- 7.7.8 An Illustration
- 7.8 The Extremal Index
- 7.8.1 The D(un) Condition
- 7.8.2 Estimation of the Extremal Index
- 7.8.3 Value at Risk for a Stationary Time Series
- Exercises
- References
- 8 Multivariate Time Series Analysis and Its Applications
- 8.1 Weak Stationarity and Cross-Correlation Matrices
- 8.1.1 Cross-Correlation Matrices
- 8.1.2 Linear Dependence
- 8.1.3 Sample Cross-Correlation Matrices
- 8.1.4 Multivariate Portmanteau Tests
- 8.2 Vector Autoregressive Models
- 8.2.1 Reduced and Structural Forms
- 8.2.2 Stationarity Condition and Moments of a VAR(1) Model
- 8.2.3 Vector AR(p) Models
- 8.2.4 Building a VAR(p) Model
- 8.2.5 Impulse Response Function
- 8.3 Vector Moving-Average Models
- 8.4 Vector ARMA Models
- 8.4.1 Marginal Models of Components
- 8.5 Unit-Root Nonstationarity and Cointegration
- 8.5.1 An Error Correction Form
- 8.6 Cointegrated VAR Models
- 8.6.1 Specification of the Deterministic Function
- 8.6.2 Maximum-Likelihood Estimation
- 8.6.3 Cointegration Test
- 8.6.4 Forecasting of Cointegrated VAR Models
- 8.6.5 An Example
- 8.7 Threshold Cointegration and Arbitrage
- 8.7.1 Multivariate Threshold Model
- 8.7.2 The Data
- 8.7.3 Estimation
- 8.8 Pairs Trading
- 8.8.1 Theoretical Framework
- 8.8.2 Trading Strategy
- 8.8.3 Simple Illustration
- Appendix A: Review of Vectors and Matrices
- Appendix B: Multivariate Normal Distributions
- Appendix C: Some SCA Commands
- Exercises
- References
- 8.1 Weak Stationarity and Cross-Correlation Matrices
- 9 Principal Component Analysis and Factor Models
- 9.1 A Factor Model
- 9.2 Macroeconometric Factor Models
- 9.2.1 Single-Factor Model
- 9.2.2 Multifactor Models
- 9.3 Fundamental Factor Models
- 9.3.1 BARRA Factor Model
- 9.3.2 Fama–French Approach
- 9.4 Principal Component Analysis
- 9.4.1 Theory of PCA
- 9.4.2 Empirical PCA
- 9.5 Statistical Factor Analysis
- 9.5.1 Estimation
- 9.5.2 Factor Rotation
- 9.5.3 Applications
- 9.6 Asymptotic Principal Component Analysis
- 9.6.1 Selecting the Number of Factors
- 9.6.2 An Example
- Exercises
- References
- 10 Multivariate Volatility Models and Their Applications
- 10.1 Exponentially Weighted Estimate
- 10.2 Some Multivariate GARCH Models
- 10.2.1 Diagonal Vectorization (VEC) Model
- 10.2.2 BEKK Model
- 10.3 Reparameterization
- 10.3.1 Use of Correlations
- 10.3.2 Cholesky Decomposition
- 10.4 GARCH Models for Bivariate Returns
- 10.4.1 Constant-Correlation Models
- 10.4.2 Time-Varying Correlation Models
- 10.4.3 Dynamic Correlation Models
- 10.5 Higher Dimensional Volatility Models
- 10.6 Factor–Volatility Models
- 10.7 Application
- 10.8 Multivariate t Distribution
- Appendix: Some Remarks on Estimation
- Exercises
- References
- 11 State-Space Models and Kalman Filter
- 11.1 Local Trend Model
- 11.1.1 Statistical Inference
- 11.1.2 Kalman Filter
- 11.1.3 Properties of Forecast Error
- 11.1.4 State Smoothing
- 11.1.5 Missing Values
- 11.1.6 Effect of Initialization
- 11.1.7 Estimation
- 11.1.8 S-Plus Commands Used
- 11.2 Linear State-Space Models
- 11.3 Model Transformation
- 11.3.1 CAPM with Time-Varying Coefficients
- 11.3.2 ARMA Models
- 11.3.3 Linear Regression Model
- 11.3.4 Linear Regression Models with ARMA Errors
- 11.3.5 Scalar Unobserved Component Model
- 11.4 Kalman Filter and Smoothing
- 11.4.1 Kalman Filter
- 11.4.2 State Estimation Error and Forecast Error
- 11.4.3 State Smoothing
- 11.4.4 Disturbance Smoothing
- 11.5 Missing Values
- 11.6 Forecasting
- 11.7 Application
- Exercises
- References
- 11.1 Local Trend Model
- 12 Markov Chain Monte Carlo Methods with Applications
- 12.1 Markov Chain Simulation
- 12.2 Gibbs Sampling
- 12.3 Bayesian Inference
- 12.3.1 Posterior Distributions
- 12.3.2 Conjugate Prior Distributions
- 12.4 Alternative Algorithms
- 12.4.1 Metropolis Algorithm
- 12.4.2 Metropolis–Hasting Algorithm
- 12.4.3 Griddy Gibbs
- 12.5 Linear Regression with Time Series Errors
- 12.6 Missing Values and Outliers
- 12.6.1 Missing Values
- 12.6.2 Outlier Detection
- 12.7 Stochastic Volatility Models
- 12.7.1 Estimation of Univariate Models
- 12.7.2 Multivariate Stochastic Volatility Models
- 12.8 New Approach to SV Estimation
- 12.9 Markov Switching Models
- 12.10 Forecasting
- 12.11 Other Applications
- Exercises
- References
- Index
UM RAFBÆKUR Á HEIMKAUP.IS
Bókahillan þín er þitt svæði og þar eru bækurnar þínar geymdar. Þú kemst í bókahilluna þína hvar og hvenær sem er í tölvu eða snjalltæki. Einfalt og þægilegt!Rafbók til eignar
Rafbók til eignar þarf að hlaða niður á þau tæki sem þú vilt nota innan eins árs frá því bókin er keypt.
Þú kemst í bækurnar hvar sem er
Þú getur nálgast allar raf(skóla)bækurnar þínar á einu augabragði, hvar og hvenær sem er í bókahillunni þinni. Engin taska, enginn kyndill og ekkert vesen (hvað þá yfirvigt).
Auðvelt að fletta og leita
Þú getur flakkað milli síðna og kafla eins og þér hentar best og farið beint í ákveðna kafla úr efnisyfirlitinu. Í leitinni finnur þú orð, kafla eða síður í einum smelli.
Glósur og yfirstrikanir
Þú getur auðkennt textabrot með mismunandi litum og skrifað glósur að vild í rafbókina. Þú getur jafnvel séð glósur og yfirstrikanir hjá bekkjarsystkinum og kennara ef þeir leyfa það. Allt á einum stað.
Hvað viltu sjá? / Þú ræður hvernig síðan lítur út
Þú lagar síðuna að þínum þörfum. Stækkaðu eða minnkaðu myndir og texta með multi-level zoom til að sjá síðuna eins og þér hentar best í þínu námi.
Fleiri góðir kostir
- Þú getur prentað síður úr bókinni (innan þeirra marka sem útgefandinn setur)
- Möguleiki á tengingu við annað stafrænt og gagnvirkt efni, svo sem myndbönd eða spurningar úr efninu
- Auðvelt að afrita og líma efni/texta fyrir t.d. heimaverkefni eða ritgerðir
- Styður tækni sem hjálpar nemendum með sjón- eða heyrnarskerðingu
- Gerð : 208
- Höfundur : 6137
- Útgáfuár : 2010
- Leyfi : 379